Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 854 results
Snippet view Table view Download 854 Result(s)
Click the to add this resource to a Collection

http://bibiserv.techfak.uni-bielefeld.de/agt-sdp/

Database providing automatic test cases for protein-protein docking. A consensus-type approach is proposed processing the whole PDB and classifying protein structures into complexes and unbound proteins by combining information from three different approaches. Out of this classification test cases are generated automatically. All calculations were run on the database. The information stored is available via a web interface. The user can choose several criteria for generating his own subset out of the test cases, e.g. for testing docking algorithms. In unbound protein--protein docking, the complex of two proteins is predicted using the unbound conformations of the proteins (Halperin et al.,2002). For testing of docking algorithms, two unbound proteins which form a known complex have to be identified, so that the result of the docking algorithm can be compared to the known complex. For the identification of test cases, the structures taken from the PDB have to be classified as unbound proteins or complexes and unbound proteins with a 100% sequence identity to one complex part have to be searched. By now, most groups use handpicked test sets. The largest collection of test cases used so far is described by Chen et al. (Chen et al.,2003) and contains 31 test cases for unbound docking. Because of the exponential growth of available protein structures in the PDB, automatic generation of test cases will become more and more important in the future.

Proper citation: Automatic Generated Test-Sets Database for Protein-Protein Docking (RRID:SCR_002281) Copy   


http://domine.utdallas.edu

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 13,2026. Database of known and predicted protein domain (domain-domain) interactions containing interactions inferred from PDB entries, and those that are predicted by 8 different computational approaches using Pfam domain definitions. DOMINE contains a total of 26,219 domain-domain interactions (among 5,410 domains) out of which 6,634 are inferred from PDB entries, and 21,620 are predicted by at least one computational approach. Of the 21,620 computational predictions, 2,989 interactions are high-confidence predictions (HCPs), 2,537 interactions are medium-confidence predictions (MCPs), and the remaining 16,094 are low-confidence predictions (LCPs). (May 2014)

Proper citation: DOMINE: Database of Protein Interactions (RRID:SCR_002399) Copy   


  • RRID:SCR_002294

    This resource has 10+ mentions.

http://www.bindingmoad.org/

Database of protein-ligand crystal structures that is a subset of the Protein Data Bank (PDB), containing every high-quality example of ligand-protein binding. The resolved protein crystal structures with clearly identified biologically relevant ligands are annotated with experimentally determined binding data extracted from literature. A viewer is provided to examine the protein-ligand structures. Ligands have additional chemical data, allowing for cheminformatics mining. The binding-affinity data ranges 13 orders of magnitude. The issue of redundancy in the data has also been addressed. To create a nonredundant dataset, one protein from each of the 1780 protein families was chosen as a representative. Representatives were chosen by tightest binding, best resolution, etc. For the 1780 best complexes that comprise the nonredundant version of Binding MOAD, 475 (27%) have binding data. This collection of protein-ligand complexes will be useful in elucidating the biophysical patterns of molecular recognition and enzymatic regulation. The complexes with binding-affinity data will help in the development of improved scoring functions and structure-based drug discovery techniques.

Proper citation: Binding MOAD (RRID:SCR_002294) Copy   


http://edas2.bioinf.fbb.msu.ru/

Databases of alternatively spliced genes with data on the alignment of proteins, mRNAs, and EST. It contains information on all exons and introns observed, as well as elementary alternatives formed from them. The database makes it possible to filter the output data by changing the cut-off threshold by the significance level. It contains splicing information on human, mouse, dog (not yet functional) and rat (not yet functional). For each database, users can search by keyword or by overall gene expression. They can also view genes based on chromosomal arrangement or other position in genome (exon, intron, acceptor site, donor site), functionality, position, conservation, and EST coverage. Also offered is an online Fisher test.

Proper citation: EDAS - EST-Derived Alternative Splicing Database (RRID:SCR_002449) Copy   


http://genome.jouy.inra.fr/spid/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. An online database of two-hybrid protein interactions in B. Subtilis. Interactions stored in SPID are either characterized by experimental evidence or by bibliographic references. A graphical user interface is provided to explore interaction networks as well as to view the details of each piece of evidence. The database contains 112 interactions between 79 proteins.

Proper citation: Subtilis Protein interaction Database (RRID:SCR_002123) Copy   


  • RRID:SCR_002119

    This resource has 10+ mentions.

http://www.pubgene.org/

It helps users retrieve information on genes and proteins. The underlying structure of PubGene can be viewed as a gene-centric database. Gene and protein names are cross-referenced to each other and to terms that are relevant to understanding their biological function, importance in disease and relationship to chemical substances. The result is a literature network organizing information in a form that is easy to navigate.

Proper citation: PubGene (RRID:SCR_002119) Copy   


  • RRID:SCR_002077

    This resource has 100+ mentions.

http://www.ncbi.nlm.nih.gov/cdd

Database of annotations of functional units in proteins including multiple sequence alignment models for ancient domains and full-length proteins. This collection of models includes 3D structures that display the sequence/structure/function relationships in proteins. It also includes alignments of the domains to known three-dimensional protein structures in the MMDB database. The source databases are Pfam, Smart, and COG. Users can identify amino acids in protein sequences with the resources available as well as view single sequences embedded within multiple sequence alignments.

Proper citation: Conserved Domain Database (RRID:SCR_002077) Copy   


  • RRID:SCR_002231

    This resource has 500+ mentions.

http://cpdb.molgen.mpg.de

An integrative interaction database that integrates different types of functional interactions from heterogeneous interaction data resources. Physical protein interactions, metabolic and signaling reactions and gene regulatory interactions are integrated in a seamless functional association network that simultaneously describes multiple functional aspects of genes, proteins, complexes, metabolites, etc. With human, yeast and mouse complex functional interactions, it currently constitutes the most comprehensive publicly available interaction repository for these species. Different ways of utilizing these integrated interaction data, in particular with tools for visualization, analysis and interpretation of high-throughput expression data in the light of functional interactions and biological pathways is offered.

Proper citation: ConsensusPathDB (RRID:SCR_002231) Copy   


https://pfam.xfam.org/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23,2022. iPfam is a resource that describes physical interactions between those Pfam domains that have a representative structure in the Protein DataBank (PDB). When two or more domains occur within a single structure, the domains are analysed to see if they form an interaction. If the domains are close enough to form an interaction, the bonds that play a role in that interaction are determined. The goal has been to re-calculate iPfam interaction data for each new Pfam release, so that, as Pfam changes, the information within iPfam remains up to date.

Proper citation: Protein families database of alignments and HMMs (RRID:SCR_002115) Copy   


http://compbio.cs.toronto.edu/psmdb

Database of non-redundant sets of protein - small-molecule complexes that are especially suitable for structure-based drug design and protein - small-molecule interaction research. PSMB supports: * Support frequent updates - The number of new structures in the PDB is growing rapidly. In order to utilize these structures, frequent updates are required. In contrast to manual procedures which require significant time and effort per update, generation of the PSMDB database is fully automatic thereby facilitating frequent database updates. * Consider both protein and ligand structural redundancy - In the database, two complexes are considered redundant if they share a similar protein and ligand (the protein - small-molecule non-redundant set). This allows the database to contain structural information for the same protein bound to several different ligands (and vice-versa). Additionally, for completeness, the database contains a set of non-redundant complexes when only protein structural redundancy is considered (our protein non-redundant set). The following images demonstrate the structural redundancy of the protein complexes in the PDB compared to the PSMDB. * Efficient handling of covalent bonds -Many protein complexes contain covalently bound ligands. Typically, protein-ligand databases discard these complexes; however, the PSMDB simply removes the covalently bound ligand from the complex, retaining any non-covalently bound ligands. This increases the number of usable complexes in the database. * Separate complexes into protein and ligand files -The PSMDB contains individual structure files for both the protein and all non-covalently bound ligands. The unbound proteins are in PDB format while the individual ligands are in SDF format (in their native coordinate frame).

Proper citation: Protein-Small Molecule Database (RRID:SCR_002112) Copy   


http://fullmal.hgc.jp/index_ajax.html

FULL-malaria is a database for a full-length-enriched cDNA library from the human malaria parasite Plasmodium falciparum. Because of its medical importance, this organism is the first target for genome sequencing of a eukaryotic pathogen; the sequences of two of its 14 chromosomes have already been determined. However, for the full exploitation of this rapidly accumulating information, correct identification of the genes and study of their expression are essential. Using the oligo-capping method, this database has produced a full-length-enriched cDNA library from erythrocytic stage parasites and performed one-pass reading. The database consists of nucleotide sequences of 2490 random clones that include 390 (16%) known malaria genes according to BLASTN analysis of the nr-nt database in GenBank; these represent 98 genes, and the clones for 48 of these genes contain the complete protein-coding sequence (49%). On the other hand, comparisons with the complete chromosome 2 sequence revealed that 35 of 210 predicted genes are expressed, and in addition led to detection of three new gene candidates that were not previously known. In total, 19 of these 38 clones (50%) were full-length. From these observations, it is expected that the database contains approximately 1000 genes, including 500 full-length clones. It should be an invaluable resource for the development of vaccines and novel drugs. Full-malaria has been updated in at least three points. (i) 8934 sequences generated from the addition of new libraries added so that the database collection of 11,424 full-length cDNAs covers 1375 (25%) of the estimated number of the entire 5409 parasite genes. (ii) All of its full-length cDNAs and GenBank EST sequences were mapped to genomic sequences together with publicly available annotated genes and other predictions. This precisely determined the gene structures and positions of the transcriptional start sites, which are indispensable for the identification of the promoter regions. (iii) A total of 4257 cDNA sequences were newly generated from murine malaria parasites, Plasmodium yoelii yoelii. The genome/cDNA sequences were compared at both nucleotide and amino acid levels, with those of P.falciparum, and the sequence alignment for each gene is presented graphically. This part of the database serves as a versatile platform to elucidate the function(s) of malaria genes by a comparative genomic approach. It should also be noted that all of the cDNAs represented in this database are supported by physical cDNA clones, which are publicly and freely available, and should serve as indispensable resources to explore functional analyses of malaria genomes. Sponsors: This database has been constructed and maintained by a Grant-in-Aid for Publication of Scientific Research Results from the Japan Society for the Promotion of Science (JSPS). This work was also supported by a Special Coordination Funds for Promoting Science and Technology from the Science and Technology Agency of Japan (STA) and a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan.

Proper citation: Full-Malaria: Malaria Full-Length cDNA Database (RRID:SCR_002348) Copy   


  • RRID:SCR_005809

    This resource has 100+ mentions.

http://bigg.ucsd.edu/

A knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.

Proper citation: BiGG Database (RRID:SCR_005809) Copy   


  • RRID:SCR_005803

    This resource has 100+ mentions.

http://the_brain.bwh.harvard.edu/uniprobe/

Database that hosts experimental data from universal protein binding microarray (PBM) experiments (Berger et al., 2006) and their accompanying statistical analyses from prokaryotic and eukaryotic organisms, malarial parasites, yeast, worms, mouse, and human. It provides a centralized resource for accessing comprehensive data on the preferences of proteins for all possible sequence variants ("words") of length k ("k-mers"), as well as position weight matrix (PWM) and graphical sequence logo representations of the k-mer data. The database's web tools include a text-based search, a function for assessing motif similarity between user-entered data and database PWMs, and a function for locating putative binding sites along user-entered nucleotide sequences.

Proper citation: UniPROBE (RRID:SCR_005803) Copy   


  • RRID:SCR_005634

    This resource has 1+ mentions.

http://transpogene.tau.ac.il/

A publicly available database of Transposed elements (TEs) which are located within protein-coding genes of 7 organisms: human, mouse, chicken, zebrafish, fruilt fly, nematode and sea squirt. Using TranspoGene the user can learn about the many aspects of the effect these TEs have on their hosting genes, such as: exonization events (including alternative splicing-related data), insertion of TEs into introns, exons, and promoters, specific location of the TE over the gene, evolutionary divergence of the TE from its consensus sequence and involvement in diseases. TranspoGene database is quickly searchable through its website, enables many kinds of searches and is available for download. TranspoGene contains information regarding specific type and family of the TEs, genomic and mRNA location, sequence, supporting transcript accession and alignment to the TE consensus sequence. The database also contains host gene specific data: gene name, genomic location, Swiss-Prot and RefSeq accessions, diseases associated with the gene and splicing pattern. The TranspoGene and microTranspoGene databases can be used by researchers interested in the effect of TE insertion on the eukaryotic transcriptome.

Proper citation: TranspoGene (RRID:SCR_005634) Copy   


http://www.kabatdatabase.com/

The Kabat Database determines the combining site of antibodies based on the available amino acid sequences. The precise delineation of complementarity determining regions (CDR) of both light and heavy chains provides the first example of how properly aligned sequences can be used to derive structural and functional information of biological macromolecules. The Kabat database now includes nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules, and other proteins of immunological interest. The Kabat Database searching and analysis tools package is an ASP.NET web-based portal containing lookup tools, sequence matching tools, alignment tools, length distribution tools, positional correlation tools and much more. The searching and analysis tools are custom made for the aligned data sets contained in both the SQL Server and ASCII text flat file formats. The searching and analysis tools may be run on a single PC workstation or in a distributed environment. The analysis tools are written in ASP.NET and C# and are available in Visual Studio .NET 2003/2005/2008 formats. The Kabat Database was initially started in 1970 to determine the combining site of antibodies based on the available amino acid sequences at that time. Bence Jones proteins, mostly from human, were aligned, using the now-known Kabat numbering system, and a quantitative measure, variability, was calculated for every position. Three peaks, at positions 24-34, 50-56 and 89-97, were identified and proposed to form the complementarity determining regions (CDR) of light chains. Subsequently, antibody heavy chain amino acid sequences were also aligned using a different numbering system, since the locations of their CDRs (31-35B, 50-65 and 95-102) are different from those of the light chains. CDRL1 starts right after the first invariant Cys 23 of light chains, while CDRH1 is eight amino acid residues away from the first invariant Cys 22 of heavy chains. During the past 30 years, the Kabat database has grown to include nucleotide sequences, sequences of T cell receptors for antigens (TCR), major histocompatibility complex (MHC) class I and II molecules and other proteins of immunological interest. It has been used extensively by immunologists to derive useful structural and functional information from the primary sequences of these proteins.

Proper citation: Kabat Database of Sequences of Proteins of Immunological Interest (RRID:SCR_006465) Copy   


http://indel.bioinfo.sdu.edu.cn/gridsphere/gridsphere

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Indel Flanking Region Database is an online resource for indels and the flanking regions of proteins in SCOP superfamilies, including amino acid sequences, lengths, locations, secondary structure constitutions, hydrophilicity / hydrophobicity, domain information, 3D structures and so on. It aims at providing a comprehensive dataset for analyzing the qualities of amino acid insertion/deletions(indels), substitutions and the relationship between them. The indels were obtained through the pairwise alignment of homologous structures in SCOP superfamilies. The IndelFR database contains 2,925,017 indels with flanking regions extracted from 373,402 structural alignment pairs of 12,573 non-redundant domains from 1053 superfamilies. IndelFR has already been used for molecular evolution studies and may help to promote future functional studies of indels and their flanking regions.

Proper citation: IndelFR - Indel Flanking Region Database (RRID:SCR_006050) Copy   


  • RRID:SCR_006112

    This resource has 1+ mentions.

http://proportal.mit.edu/

ProPortal is a database containing genomic, metagenomic, transcriptomic and field data for the marine cyanobacterium Prochlorococcus. Our goal is to provide a source of cross-referenced data across multiple scales of biological organization--from the genome to the ecosystem--embracing the full diversity of ecotypic variation within this microbial taxon, its sister group, Synechococcus and phage that infect them. The site currently contains the genomes of 13 Prochlorococcus strains, 11 Synechococcus strains and 28 cyanophage strains that infect one or both groups. Cyanobacterial and cyanophage genes are clustered into orthologous groups that can be accessed by keyword search or through a genome browser. Users can also identify orthologous gene clusters shared by cyanobacterial and cyanophage genomes. Gene expression data for Prochlorococcus ecotypes MED4 and MIT9313 allow users to identify genes that are up or downregulated in response to environmental stressors. In addition, the transcriptome in synchronized cells grown on a 24-h light-dark cycle reveals the choreography of gene expression in cells in a ''natural'' state. Metagenomic sequences from the Global Ocean Survey from Prochlorococcus, Synechococcus and phage genomes are archived so users can examine the differences between populations from diverse habitats. Finally, an example of cyanobacterial population data from the field is included.

Proper citation: ProPortal (RRID:SCR_006112) Copy   


  • RRID:SCR_006109

    This resource has 10+ mentions.

http://possum.cbrc.jp/PoSSuM/

Relational database of all the discovered similar pairs in a huge number of protein-ligand binding sites with annotations of various types (e.g., CATH, SCOP, EC number, Gene ontology). They used a tremendously fast algorithm called SketchSort that enables the enumeration of similar pairs in a huge number of protein-ligand binding sites. They conducted all-pair similarity searches for 3.4 million known and potential binding sites using the proposed method and discovered over 24 million similar pairs of binding sites. PoSSuM enables rapid exploration of similar binding sites among structures with different global folds as well as similar ones. Moreover, PoSSuM is useful for predicting the binding ligand for unbound structures. Basically, the users can search similar binding pockets using two search modes: # Search K is useful for finding similar binding sites for a known ligand-binding site. Post a known ligand-binding site (a pair of PDB ID and HET code) in the PDB, and PoSSuM will search similar sites for the query site. # Search P is useful for predicting ligands that potentially bind to a structure of interest. Post a known protein structure (PDB ID) in the PDB, and PoSSuM will search similar known-ligand binding sites for the query structure.

Proper citation: PoSSuM (RRID:SCR_006109) Copy   


  • RRID:SCR_005987

    This resource has 10+ mentions.

http://mint.bio.uniroma2.it/virusmint/

A virus protein interactions database that collects and annotates all the interactions between human and viral proteins and integrates this information in the human protein interaction network. It uses the PSI-MI standard and is fully integrated with the MINT database. You can search for any viral or human protein by entering either common names or database identifiers or display a complete viral interactome.

Proper citation: VirusMINT (RRID:SCR_005987) Copy   


http://chemistry.st-andrews.ac.uk/staff/jbom/group/databases.html

It is a publicly available web-based database that aims to provide further understanding of protein-ligand interactions. It''s a resource containing biomolecular data, including binding energies, Tanimoto ligand similarity scores and protein sequence similarities of protein-ligand complexes. The PLD contains biomolecular data including calculated binding energies, Tanimoto ligand similarity scores and protein percentage sequence similarities. The database has potential for application as a tool in molecular design.

Proper citation: Protein Ligand Database (RRID:SCR_006980) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X