Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_007907

    This resource has 500+ mentions.

http://vega.sanger.ac.uk/

Central repository for high quality frequently updated manual annotation of vertebrate finished genome sequence. Human, mouse and zebrafish are in the process of being completely annotated, whereas for other species the annotation is only of specific genomic regions of particular biological interest. The majority of the annotation is from the HAVANA group at the Welcome Trust Sanger Institute. Users can BLAST, search for specific text, export, and download data. Genomes and details of the projects for each species are available through the homepages for human mouse and zebrafish. The website is built upon code from the EnsEMBL (http://www.ensembl.org) project. Some Ensembl features are not available in Vega. From the users point of view perhaps the most significant of these is MartView. However due to their inclusion in Ensembl, Vega human and mouse data can be queried using Ensembl MartView. Vega contains annotation of the human MHC region in eight haplotypes, and the LRC region in three haplotypes. Vega also contains annotation on the Insulin Dependent Diabetes (IDD) regions on non-reference assemblies for mouse.

Proper citation: VEGA (RRID:SCR_007907) Copy   


  • RRID:SCR_007891

    This resource has 1000+ mentions.

http://rfam.xfam.org/

The Rfam database is a collection of RNA families, each represented by multiple sequence alignments, consensus secondary structures and covariance models (CMs). The families in Rfam break down into three broad functional classes: Non-coding RNA genes, structured cis-regulatory elements and self-splicing RNAs. Typically these functional RNAs often have a conserved secondary structure which may be better preserved than the RNA sequence. The CMs used to describe each family are a slightly more complicated relative of the profile hidden Markov models (HMMs) used by Pfam. CMs can simultaneously model RNA sequence and the structure in an elegant and accurate fashion. Rfam is also available via FTP. You can find data in Rfam in various ways... * Analyze your RNA sequence for Rfam matches * View Rfam family annotation and alignments * View Rfam clan details * Query Rfam by keywords * Fetch families or sequences by NCBI taxonomy * Enter any type of accession or ID to jump to the page for a Rfam family, sequence or genome

Proper citation: Rfam (RRID:SCR_007891) Copy   


  • RRID:SCR_008144

http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/intro2.pl?BASE=goat

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This website contains information about the mapping of the caprine genome. It contains loci list, phenes list, cartography, gene list, and other sequence information about goats. This website contains 731 loci, 271 genes, and 1909 homologue loci on 112 species. It also allows users to summit their own data for Goatmap. ARK-Genomics is not-for-profit and has collaborators from all over the world with an interest in farm animal genomics and genetics. ARK-Genomics was initially set up in 2000 with a grant awarded from the BBSRC IGF (Investigating Gene Function) initiative and from core resources of the Roslin Institute to provide a laboratory for automated analysis of gene expression using state-of-the-art genomic facilities. Since then, ARK-Genomics has expanded considerably, building up considerable expertise and resources.

Proper citation: GoatMap Database (RRID:SCR_008144) Copy   


http://genome.wustl.edu/projects/detail/human-gut-microbiome/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 19,2022. Human Gut Microbiome Initiative (HGMI) seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota. Humans are supra-organisms, composed of 10 times more microbial cells than human cells. Therefore, it seems appropriate to consider ourselves as a composite of many species - human, bacterial, and archaeal - and our genome as an amalgamation of human genes and the genes in ''our'' microbial genomes (''microbiome''). In the same sense, our metabolome can be considered to be a synthesis of co-evolved human and microbial traits. The total number of genes present in the human microbiome likely exceeds the number of our H. sapiens genes by orders of magnitude. Thus, without an understanding of our microbiota and microbiome, it not possible to obtain a complete picture of our genetic diversity and of our normal physiology. Our intestine is home to our largest collections of microbes: bacterial densities in the colon (up to 1 trillion cells/ml of luminal contents) are the highest recorded for any known ecosystem. The vast majority of phylogenetic types in the distal gut microbiota belong to just two divisions (phyla) of the domain Bacteria - the Bacteroidetes and the Firmicutes. Members of eight other divisions have also been identified using culture-independent 16S rRNA gene-based surveys. Metagenomic studies of complex microbial communities residing in our various body habitats are limited by the availability of suitable reference genomes for confident assignment of short sequence reads generated by highly parallel DNA sequencers, and by knowledge of the professions (niches) of community members. Therefore, HGMI, which represents a collaboration between Washington University''s Genome Center and its Center for Genome Sciences, seeks to provide simply annotated, deep draft genome sequences for 100 cultured representatives of the phylogenetic diversity documented by 16S rRNA surveys of the human gut microbiota.

Proper citation: Human Gut Microbiome Initiative (RRID:SCR_008137) Copy   


  • RRID:SCR_008033

    This resource has 100+ mentions.

http://www.gene-regulation.com/pub/databases.html

In an effort to strongly support the collaborative nature of scientific research, BIOBASE offers academic and non-profit organizations free access to reduced functionality versions of their products. TRANSFAC Professional provides gene regulation analysis solutions, offering the most comprehensive collection of eukaryotic gene regulation data. The professional paid subscription gives customers access to up-to-date data and tools not available in the free version. The public databases currently available for academic and non-profit organizations are: * TRANSFAC: contains data on transcription factors, their experimentally-proven binding sites, and regulated genes. Its broad compilation of binding sites allows the derivation of positional weight matrices. * TRANSPATH: provides data about molecules participating in signal transduction pathways and the reactions they are involved in, resulting in a complex network of interconnected signaling components.TRANSPATH focuses on signaling cascades that change the activities of transcription factors and thus alter the gene expression profile of a given cell. * PathoDB: is a database on pathologically relevant mutated forms of transcription factors and their binding sites. It comprises numerous cases of defective transcription factors or mutated transcription factor binding sites, which are known to cause pathological defects. * S/MARt DB: presents data on scaffold or matrix attached regions (S/MARs) of eukaryotic genomes, as well as about the proteins that bind to them. S/MARs organize the chromatin in the form of functionally independent loop domains gained increasing support. Scaffold or Matrix Attached Regions (S/MARs) are genomic DNA sequences through which the chromatin is tightly attached to the proteinaceous scaffold of the nucleus. * TRANSCompel: is a database on composite regulatory elements affecting gene transcription in eukaryotes. Composite regulatory elements consist of two closely situated binding sites for distinct transcription factors, and provide cross-coupling of different signaling pathways. * PathoSign Public: is a database which collects information about defective cell signaling molecules causing human diseases. While constituting a useful data repository in itself, PathoSign is also aimed at being a foundational part of a platform for modeling human disease processes.

Proper citation: Gene Regulation Databases (RRID:SCR_008033) Copy   


  • RRID:SCR_008154

    This resource has 1+ mentions.

http://ncv.unl.edu/Angelettilab/HPV/Database.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone., documented August 23, 2016. The Human Papillomaviruses Database collects, curates, analyzes, and publishes genetic sequences of papillomaviruses and related cellular proteins. It includes molecular biologists, sequence analysts, computer technicians, post-docs and graduate research assistants. This Web site has two main branches. The first contains our four annual data books of papillomavirus information, called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. and the second contains papillomavirus genetic sequence data. There is also a New Items location where we store the latest changes to the database or any other current news of interest. Besides the compendium, we also provide genetic sequence information for papilloma viruses and related cellular proteins. Each year they publish a compendium of papillomavirus information called Human Papillomaviruses: A Compilation and Analysis of Nucleic Acid and Amino Acid Sequences. which can now be downloaded from this Web site.

Proper citation: HPV Sequence Database (RRID:SCR_008154) Copy   


http://www.genomatix.de/

Genomatix is a privately held company that offers software, databases, and services aimed at understanding gene regulation at the molecular level representing a central part of systems biology. Its multilayer integrative approach is a working implementation of systems biology principles. Genomatix combines sequence analysis, functional promoter analysis, proprietary genome annotation, promoter sequence databases, comparative genomics, scientific literature data mining, pathway databases, biological network databases, pathway analysis, network analysis, and expression profiling into working solutions and pipelines. It also enables better understanding of biological mechanisms under different conditions and stimuli in the biological context of your data. Some of Genomatix'' most valuable assets are the strong scientific background and the years of experience in research & discovery as well as in development & application of scientific software. Their firsthand knowledge of all the complexities involved in the in-silico analysis of biological data makes them a first-rate partner for all scientific projects involving the evaluation of gene regulatory mechanisms. The Genomatix team has more than a decade of scientific expertise in the successful application of computer aided analysis of gene regulatory networks, which is reflected by more than 150 peer reviewed scientific publications from Genomatix'' scientists More than 35,000 researchers in industry and academia around the world use this technology. The software available in Genomatix are: - GenomatixSuite: GenomatixSuite is our comprehensive software bundle including ElDorado, Gene2Promoter, GEMS Launcher, MatInspector and MatBase. GenomatixSuite PE also includes BiblioSphere Pathway Edition. Chromatin IP Software - RegionMiner: Fast, extensive analysis of genomic regions. - ChipInspector: Discover the real power of your microarray data. Genome Annotation Software - ElDorado: Extended Genome Annotation. - Gene2Promoter: Retrieve & analyze promoters - GPD: The Genomatix Promoter Database, which is now included with Gene2Promoter. Knowledge Mining Software - BiblioSpere : The next level of pathway/genomics analysis. - LitInspector: Literature and pathway analysis for free. Sequence Analysis Software - GEMS Launcher: Our integrated collection of sequence analysis tools. - MalInspector: Search transcription factor binding sites - MatBase: The transcription factor knowledge base. Other (no registration required) Software - DiAlign: Multiple alignment of DNA/protein sequence. - Genomatix tools: Various small tools for sequence statistics, extraction, formatting, etc.

Proper citation: Genomatix Software: Understanding Gene Regulation (RRID:SCR_008036) Copy   


http://www.animalgenome.org/pigs/nagrp.html

Database and resources on the pig genome.

Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy   


http://csgr.pgml.uga.edu/

The objective of this project is to develop physical maps of the sorghum and rice genomes, based on BAC contigs that are cross-linked to each other and also to genetic maps and BAC islands for other large-genome crops and a library of ca. 50,000 expressed-sequence tags (EST''s) and corresponding cDNA clones, from diverse sorghum organs and developmental states. It also aims to improve understanding of genetic diversity and allelic richness that might be harbored ex situ (in gene banks) or in situ (in nature), and refine techniques for assesing allelic richness and Expedite data acquisition and utilization by a sound parnership between laboratory scientists and computational biologists. Specific goals of developing physical maps of sorghum and rice genomes include: -Enrich cross-links between sorghum and rice by mapping additional rice probes on sorghum. -Apply mapped DNA probes to macroarrays of sorghum, sugarcane, rice, and maize BACs. -Fingerprint 10x BAC libraries of Sorghum bicolor and S. propinquum. Libraries presently 3x and 6x respectively, to be expanded to 10x each. -Use fragment-matching (BAC-RF) method to determine locus-specificity in polyploids. - Contig assembly based on 1-3, plus rice BAC fingerprints generated under a separate Novartis project. -Evaluate methodology for rapid high-throughput assignment of new ESTs to BACs. -Conduct genomic sequencing in a region duplicated in both sorghum and arabidopsis. Selected BACs from sorghum(2), sugarcane, maize, rice, wheat. By improving the understanding of genetic diversity and allelic richness, the goal is to: -Sequence previously mapped sorghum DNA probes. -Discover & characterize 100 single nucleotide polymorphisms (SNPs) from cDNA markers. -Develop colorimetric high-throughput genotyping assays, and utilize to assess genetic diversity in geographically- and phenotypically-diverse sorghums. -Develop colorimetric high-throughput asssays for identifying phytochrome allelic variation, and apply these assays to a core collection representing a large set of genetic resources. -Support informatics group to streamline cataloging of DNA-level information relevant to large genetic resources collections. Lastly, the goals of expediting data acquisition and utilization include: -A new web-based resource for 3D-integration and visualization of structural and functional genomic data will be developed. -New sequence assembly and alignment software SABER (Sequence AssemBly in the presence of ERror), and PRIMAL(Practical RIgorous Multiple ALignment), will be evaluated with reference to existing standards (PHRED, PHRAP). -Specialized image processing and image analysis tools will be developed for acquistion and interpretation of qualitative and quantitative hybridization signals. To deal expeditiously with large volumes of data, parallel processing approaches will be investigated. Sponsors: * National Science Foundation (NSF) * National Sorghum Producers * University of Georgia Research Foundation (UGARF) * Georgia Research Alliance (GRA)

Proper citation: Comparative Saccharinae Genomics Resource (RRID:SCR_008153) Copy   


  • RRID:SCR_008183

    This resource has 1+ mentions.

http://genewindow.nci.nih.gov/

Software tool for pre- and post-genetic bioinformatics and analytical work, developed and used at the Core Genotyping Facility (CGF) at the National Cancer Institute. While Genewindow is implemented for the human genome and integrated with the CGF laboratory data, it stands as a useful tool to assist investigators in the selection of variants for study in vitro, or in novel genetic association studies. The Genewindow application and source code is publicly available for use in other genomes, and can be integrated with the analysis, storage, and archiving of data generated in any laboratory setting. This can assist laboratories in the choice and tracking of information related to genetic annotations, including variations and genomic positions. Features of GeneWindow include: -Intuitive representation of genomic variation using advanced web-based graphics (SVG) -Search by HUGO gene symbol, dbSNP ID, internal CGF polymorphism ID, or chromosome coordinates -Gene-centric display (only when a gene of interest is in view) oriented 5 to 3 regardless of the reference strand and adjacent genes -Two views, a Locus Overview, which varies in size depending on the gene or genomic region being viewed and, below it, a Sequence View displaying 2000 base pairs within the overview -Navigate the genome by clicking along the gene in the Locus Overview to change the Sequence View, expand or contract the genomic interval, or shift the view in the 5 or 3 direction (relative to the current gene) -Lists of available genomic features -Search for sequence matches in the Locus Overview -Genomic features are represented by shape, color and opacity with contextual information visible when the user moves over or clicks on a feature -Administrators can insert newly-discovered polymorphisms into the Genewindow database by entering annotations directly through the GUI -Integration with a Laboratory Information Management System (LIMS) or other databases is possible

Proper citation: GeneWindow (RRID:SCR_008183) Copy   


http://www.osc.riken.jp/english/

Omics Science Center is aiming to develop a comprehensive system called Life Science Accelerator(LSA) for the advancement of omics research. The LSA is a comprehensive system consists of biological resources, human resources, technologies, know-how, and essential administrative ability. Ultimate goal of LSA is to support and accelerate the advancement in life science research. Omics is the comprehensive study of molecules in living organisms. The complete sequencing of genomes (the complete set of genes in an organism) has enabled rapid developments in the collection and analysis of various types of comprehensive molecular data such as transcriptomes (the complete set of gene expression data) and proteomes (the complete set of intracellular proteins). Fundamental omics research aims to link these omics data to molecular networks and pathways in order to advance the understanding of biological phenomena as systems at the molecular level.

Proper citation: RIKEN Omics Science Center (RRID:SCR_008241) Copy   


  • RRID:SCR_006056

    This resource has 1+ mentions.

http://genomefoundation.org/index.php/Main_Page

The Genome Foundation (AKA Genome Research Foundation) is a fully government accredited and registered non-profit research foundation. GRF aims to provide genome philosophy, science, and technology. GRF is a nonprofit publisher, and research and advocacy organization to promote completely free publication of knowledge with minimum restriction. Our core objectives are to: * Provide ways to overcome unnecessary barriers to immediate availability, access, and use of research * Pursue a publishing strategy that optimizes the openness, quality, and integrity of the publication process * Develop innovative approaches to the assessment, organization, and reuse of ideas and data Genome Foundation Research * Personalized Medicine * Personal Genomics * AngioGenesis drug * Bioinformatics * RNA expression * Protein structure * Human Genome Rights Projects at Genome Foundation * The Human Genome Rights * Human Genome Rights Petition * Free Personal Genome Sequencing Project * Free Personal Genome Sequencing Petition * Tiger Genome Initiative: Amur Tiger and big cat genomes * Whale Genome Project

Proper citation: Genome Research Foundation (RRID:SCR_006056) Copy   


  • RRID:SCR_005917

    This resource has 500+ mentions.

http://www.vectorbase.org

Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.

Proper citation: VectorBase (RRID:SCR_005917) Copy   


  • RRID:SCR_005942

    This resource has 10+ mentions.

http://bio-bigdata.hrbmu.edu.cn/diseasemeth/

Human disease methylation database. DiseaseMeth version 2.0 is focused on aberrant methylomes of human diseases. Used for understanding of DNA methylation driven human diseases.

Proper citation: DiseaseMeth (RRID:SCR_005942) Copy   


  • RRID:SCR_006070

    This resource has 10+ mentions.

http://www.nematodes.org/nembase4/

NEMBASE is a comprehensive Nematode Transcriptome Database including 63 nematode species, over 600,000 ESTs and over 250,000 proteins. Nematode parasites are of major importance in human health and agriculture, and free-living species deliver essential ecosystem services. The genomics revolution has resulted in the production of many datasets of expressed sequence tags (ESTs) from a phylogenetically wide range of nematode species, but these are not easily compared. NEMBASE4 presents a single portal into extensively functionally annotated, EST-derived transcriptomes from over 60 species of nematodes, including plant and animal parasites and free-living taxa. Using the PartiGene suite of tools, we have assembled the publicly available ESTs for each species into a high-quality set of putative transcripts. These transcripts have been translated to produce a protein sequence resource and each is annotated with functional information derived from comparison with well-studied nematode species such as Caenorhabditis elegans and other non-nematode resources. By cross-comparing the sequences within NEMBASE4, we have also generated a protein family assignment for each translation. The data are presented in an openly accessible, interactive database. An example of the utility of NEMBASE4 is that it can examine the uniqueness of the transcriptomes of major clades of parasitic nematodes, identifying lineage-restricted genes that may underpin particular parasitic phenotypes, possible viral pathogens of nematodes, and nematode-unique protein families that may be developed as drug targets.

Proper citation: NEMBASE (RRID:SCR_006070) Copy   


  • RRID:SCR_005971

    This resource has 10+ mentions.

http://vbrc.org/index.asp

One of eight Bioinformatics Resource Centers nationwide providing comprehensive web-based genomics resources including a relational database and web application supporting data storage, annotation, analysis, and information exchange to support scientific research directed at viruses belonging to the Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, Paramyxoviridae, Poxviridae, and Togaviridae families. These centers serve the scientific community and conduct basic and applied research on microorganisms selected from the NIH/NIAID Category A, B, and C priority pathogens that are regarded as possible bioterrorist threats or as emerging or re-emerging infectious diseases. The VBRC provides a variety of analytical and visualization tools to aid in the understanding of the available data, including tools for genome annotation, comparative analysis, whole genome alignments, and phylogenetic analysis. Each data release contains the complete genomic sequences for all viral pathogens and related strains that are available for species in the above-named families. In addition to sequence data, the VBRC provides a curation for each virus species, resulting in a searchable, comprehensive mini-review of gene function relating genotype to biological phenotype, with special emphasis on pathogenesis.

Proper citation: VBRC (RRID:SCR_005971) Copy   


  • RRID:SCR_006013

    This resource has 100+ mentions.

http://fungidb.org/fungidb/

FungiDB is a database for functional and evolutionary comparison of fungal genomes. FungiDB is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal "Zygomycete" lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.

Proper citation: FungiDB (RRID:SCR_006013) Copy   


  • RRID:SCR_006211

http://athina.biol.uoa.gr/bioinformatics/GENEVITO/

A JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources) and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI) allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of poor annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. GeneViTo has already been applied to visualize the genomes of two microbial organisms: the bacterion Chlamydia trachomatis and the archaeon Methanococcus jannaschii. The application is compatible with Linux or Windows ME-2000-XP operating systems, provided that the appropriate Java Runtime Environment (Java 1.4.1) is already installed in the system.

Proper citation: GeneVito (RRID:SCR_006211) Copy   


http://www.ddduk.org/

The Deciphering Developmental Disorders (DDD) study aims to find out if using new genetic technologies can help doctors understand why patients get developmental disorders. To do this we have brought together doctors in the 23 NHS Regional Genetics Services throughout the UK and scientists at the Wellcome Trust Sanger Institute, a charitably funded research institute which played a world-leading role in sequencing (reading) the human genome. The DDD study involves experts in clinical, molecular and statistical genetics, as well as ethics and social science. It has a Scientific Advisory Board consisting of scientists, doctors, a lawyer and patient representative, and has received National ethical approval in the UK. Over the next few years, we are aiming to collect DNA and clinical information from 12,000 undiagnosed children in the UK with developmental disorders and their parents. The results of the DDD study will provide a unique, online catalogue of genetic changes linked to clinical features that will enable clinicians to diagnose developmental disorders. Furthermore, the study will enable the design of more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with developmental disorders. Over time, the work will also improve understanding of how genetic changes cause developmental disorders and why the severity of the disease varies in individuals. The Sanger Institute will contribute to the DDD study by performing genetic analysis of DNA samples from patients with developmental disorders, and their parents, recruited into the study through the Regional Genetics Services. Using microarray technology and the latest DNA sequencing methods, research teams will probe genetic information to identify mutations (DNA errors or rearrangements) and establish if these mutations play a role in the developmental disorders observed in patients. The DDD initiative grew out of the groundbreaking DECIPHER database, a global partnership of clinical genetics centres set up in 2004, which allows researchers and clinicians to share clinical and genomic data from patients worldwide. The DDD study aims to transform the power of DECIPHER as a diagnostic tool for use by clinicians. As well as improving patient care, the DDD team will empower researchers in the field by making the data generated securely available to other research teams around the world. By assembling a solid resource of high-quality, high-resolution and consistent genomic data, the leaders of the DDD study hope to extend the reach of DECIPHER across a broader spectrum of disorders than is currently possible.

Proper citation: Deciphering Developmental Disorders (RRID:SCR_006171) Copy   


  • RRID:SCR_006209

    This resource has 1+ mentions.

http://vizhub.wustl.edu

A visualization hub displaying sequencing data from the Roadmap Epigenomics project. It hosts high volume of tracks from ENCODE and Roadmap Epigenomics projects, supports multiple organisms, visualizes chromatin-interaction data (e.g. Hi-C), performs gene set view, gene plot, and many others. All delivered on the web at high performance.

Proper citation: VizHub (RRID:SCR_006209) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X