Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.
Proper citation: ToppGene Suite (RRID:SCR_005726) Copy
http://www.arabidopsis.org/servlets/Search?type=keyword&action=new_search
TAIR Keyword Browser searches and browses for Gene Ontology, TAIR Anatomy, and TAIR Developmental stage terms, and allows you to view term details and relationships among terms. It includes links to genes, publications, microarray experiments and annotations associated with the term or any children terms. Platform: Online tool
Proper citation: TAIR Keyword Browser (RRID:SCR_005687) Copy
GOTaxExplorer presents a new approach to comparative genomics that integrates functional information and families with the taxonomic classification. It integrates UniProt, Gene Ontology, NCBI Taxonomy, Pfam and SMART in one database. GOTaxExplorer provides four different query types: selection of entity sets, comparison of sets of Pfam families, semantic comparison of sets of GO terms, functional comparison of sets of gene products. This permits to select custom sets of GO terms, families or taxonomic groups. For example, it is possible to compare arbitrarily selected organisms or groups of organisms from the taxonomic tree on the basis of the functionality of their genes. Furthermore, it enables to determine the distribution of specific molecular functions or protein families in the taxonomy. The comparison of sets of GO terms allows to assess the semantic similarity of two different GO terms. The functional comparison of gene products makes it possible to identify functionally equivalent and functionally related gene products from two organisms on the basis of GO annotations and a semantic similarity measure for GO. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GOTaxExplorer (RRID:SCR_005720) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Miner
Onto-Miner (OM) provides a single and convenient interface that allows the user to interrogate our databases regarding annotations of known genes. OM will return all known information about a given list of genes. Advantages of OM include the fact it allows queries with multiple genes and allows for scripting. This is unlike GenBank which uses a single gene navigation process. Scripted search of the Onto-Tools database for gene annotations. User account required. Platform: Online tool
Proper citation: Onto-Miner (RRID:SCR_005722) Copy
http://www.pandora.cs.huji.ac.il/
With PANDORA, you can search for any non-uniform sets of proteins and detect subsets of proteins that share unique biological properties and the intersections of such sets. PANDORA supports GO annotations as well as additional keywords (from UniProt Knowledgebase, InterPro, ENZYME, SCOP etc). It is also integrated into the ProtoNet system, thus allowing testing of thousands of automatically generated protein families. Note that PANDORA replaces the ProtoGO browser developed by the same group. Platform: Online tool
Proper citation: Pandora - Protein ANnotation Diagram ORiented Analysis (RRID:SCR_005686) Copy
http://mcbc.usm.edu/gofetcher/
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. We developed a web application, GOfetcher, with a very comprehensive search facility for the GO project and a variety of output formats for the results. GOfetcher has three different levels for searching the GO: Quick Search, Advanced Search, and Upload Files for searching. The application includes a unique search option which generates gene information given a nucleotide or protein accession number which can then be used in generating gene ontology information. The output data in GOfetcher can be saved into several different formats; including spreadsheet, comma-separated values, and the Extensible Markup Language (XML) format. Platform: Online tool
Proper citation: GOfetcher (RRID:SCR_005681) Copy
http://llama.mshri.on.ca/gofish/GoFishWelcome.html
Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GoFish (RRID:SCR_005682) Copy
http://www.stanford.edu/~nigam/cgi-bin/dokuwiki/doku.php?id=clench
Cluster Enrichment (CLENCH) allows A. thaliana researchers to perform automated retrieval of GO annotations from TAIR and calculate enrichment of GO terms in gene group with respect to a reference set. Before calculating enrichment, CLENCH allows mapping of the returned annotations to arbitrary coarse levels using GO slim term lists (which can be edited by the user) and a local installation of GO. Platform: Windows compatible, Linux compatible,
Proper citation: CLENCH (RRID:SCR_005735) Copy
The human pathway database which contains different biological entities and reactions and software tools for analysis. PATIKA Database integrates data from several sources, including Entrez Gene, UniProt, PubChem, GO, IntAct, HPRD, and Reactome. Users can query and access this data using the PATIKAweb query interface. Users can also save their results in XML or export to common picture formats. The BioPAX and SBML exporters can be used as part of this Web service.
Proper citation: Pathway Analysis Tool for Integration and Knowledge Acquisition (RRID:SCR_002100) Copy
http://go.princeton.edu/cgi-bin/GOTermMapper
The Generic GO Term Mapper finds the GO terms shared among a list of genes from your organism of choice within a slim ontology, allowing them to be binned into broader categories. The user may optionally provide a custom gene association file or slim ontology, or a custom list of slim terms. The implementation of this Generic GO Term Mapper uses map2slim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sherlock and Shuai Weng at Stanford University, made publicly available through the GMOD project. GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a submitted list of genes. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: Generic GO Term Mapper (RRID:SCR_005806) Copy
http://smd.stanford.edu/cgi-bin/source/sourceSearch
SOURCE compiles information from several publicly accessible databases, including UniGene, dbEST, UniProt Knowledgebase, GeneMap99, RHdb, GeneCards and LocusLink. GO terms associated with LocusLink entries appear in SOURCE. The mission of SOURCE is to provide a unique scientific resource that pools publicly available data commonly sought after for any clone, GenBank accession number, or gene. SOURCE is specifically designed to facilitate the analysis of large sets of data that biologists can now produce using genome-scale experimental approaches Platform: Online tool
Proper citation: SOURCE (RRID:SCR_005799) Copy
http://gdm.fmrp.usp.br/tools_bit.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 29, 2012. Gene Class Expression allows functional annotation of SAGE data using the Gene Ontology database. This tool performs searches in the GO database for each SAGE tag, making associations in the selected GO category for a level selected in the hierarchy. This system provides user-friendly data navigation and visualization for mapping SAGE data onto the gene ontology structure. This tool also provides graphical visualization of the percentage of SAGE tags in each GO category, along with confidence intervals and hypothesis testing. Platform: Online tool
Proper citation: Gene Class Expression (RRID:SCR_005679) Copy
http://vortex.cs.wayne.edu/projects.htm#Onto-Compare
Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Since focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the GO nomenclature. Compare commercially available microarrays based on GO. User account required. Platform: Online tool
Proper citation: Onto-Compare (RRID:SCR_005669) Copy
Database of histopathology photomicrographs and macroscopic images derived from mutant or genetically manipulated mice. The database currently holds more than 1000 images of lesions from mutant mice and their inbred backgrounds and further images are being added continuously. Images can be retrieved by searching for specific lesions or class of lesion, by genetic locus, or by a wide set of parameters shown on the Advanced Search Interface. Its two key aims are: * To provide a searchable database of histopathology images derived from experimental manipulation of the mouse genome or experiments conducted on genetically manipulated mice. * A reference / didactic resource covering all aspects of mouse pathology Lesions are described according to the Pathbase pathology ontology developed by the Pathbase European Consortium, and are available at the site or on the Gene Ontology Consortium site - OBO. As this is a community resource, they encourage everyone to upload their own images, contribute comments to images and send them their feedback. Please feel free to use any of the SOAP/WSDL web services. (under development)
Proper citation: Pathbase (RRID:SCR_006141) Copy
Software repository for R packages related to analysis and comprehension of high throughput genomic data. Uses separate set of commands for installation of packages. Software project based on R programming language that provides tools for analysis and comprehension of high throughput genomic data.
Proper citation: Bioconductor (RRID:SCR_006442) Copy
http://discover.nci.nih.gov/gominer/
GoMiner is a tool for biological interpretation of "omic" data including data from gene expression microarrays. Omic experiments often generate lists of dozens or hundreds of genes that differ in expression between samples, raising the question, What does it all mean biologically? To answer this question, GoMiner leverages the Gene Ontology (GO) to identify the biological processes, functions and components represented in these lists. Instead of analyzing microarray results with a gene-by-gene approach, GoMiner classifies the genes into biologically coherent categories and assesses these categories. The insights gained through GoMiner can generate hypotheses to guide additional research. GoMiner displays the genes within the framework of the Gene Ontology hierarchy in two ways: * In the form of a tree, similar to that in AmiGO * In the form of a "Directed Acyclic Graph" (DAG) The program also provides: * Quantitative and statistical analysis * Seamless integration with important public databases GoMiner uses the databases provided by the GO Consortium. These databases combine information from a number of different consortium participants, include information from many different organisms and data sources, and are referenced using a variety of different gene product identification approaches.
Proper citation: GoMiner (RRID:SCR_002360) Copy
http://bioinformatics.biol.rug.nl/standalone/fiva/
Functional Information Viewer and Analyzer (FIVA) aids researchers in the prokaryotic community to quickly identify relevant biological processes following transcriptome analysis. Our software is able to assist in functional profiling of large sets of genes and generates a comprehensive overview of affected biological processes. Currently, seven different modules containing functional information have been implemented: (i) gene regulatory interactions, (ii) cluster of orthologous groups (COG) of proteins, (iii) gene ontologies (GO), (iv) metabolic pathways (v) Swiss Prot keywords, (vi) InterPro domains - and (vii) generic functional categories. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: FIVA - Functional Information Viewer and Analyzer (RRID:SCR_005776) Copy
http://ftp://ftp.geneontology.org/pub/go/www/GO.tools_by_type.term_enrichment.shtml#gobean
GoBean is a Java application for gene ontology enrichment analysis. It utilizes the NetBeans platform framework. Features * Graphical comparison of multiple enrichment analysis results * Versatile filter facility for focused analysis of enrichment results * Effective exploitation of the graphical/hierarchical structure of GO * Evidence code based association filtering * Supports local data files such as the ontology obo file and gene association files * Supports late enrichment methods and multiple testing corrections * Built-in ID conversion for common species using Ensembl biomart service Platform: Windows compatible, Mac OS X compatible, Linux compatible
Proper citation: GoBean - a Java application for Gene Ontology enrichment analysis (RRID:SCR_005808) Copy
https://neuinfo.org/mynif/search.php?list=cover&q=*
Service that partners with the community to expose and simultaneously drill down into individual databases and data sets and return relevant content. This type of content, part of the so called hidden Web, is typically not indexed by existing web search engines. Every record links back to the originating site. In order for NIF to directly query these independently maintained databases and datasets, database providers must register their database or dataset with the NIF Data Federation and specify permissions. Databases are concept mapped for ease of sharing and to allow better understanding of the results. Learn more about registering your resource, http://neuinfo.org/nif_components/disco/interoperation.shtm Search results are displayed under the Data Federation tab and are categorized by data type and nervous system level. In this way, users can easily step through the content of multiple resources, all from the same interface. Each federated resource individually displays their query results with links back to the relevant datasets within the host resource. This allows users to take advantage of additional views on the data and tools that are available through the host database. The NIF site provides tutorials for each resource, indicated by the Professor Icon professor icon showing users how to navigate the results page once directed there through the NIF. Additionally, query results may be exported as an Excel document. Note: NIF is not responsible for the availability or content of these external sites, nor does NIF endorse, warrant or guarantee the products, services or information described or offered at these external sites. Integrated Databases: Theses virtual databases created by NIF and other partners combine related data indexed from multiple databases and combine them into one view for easier browsing. * Integrated Animal View * Integrated Brain Gene Expression View * Integrated Disease View * Integrated Nervous System Connectivity View * Integrated Podcasts View * Integrated Software View * Integrated Video View * Integrated Jobs * Integrated Blogs For a listing of the Federated Databases see, http://neuinfo.org/mynif/databaseList.php or refer to the Resources Listed by NIF Data Federation table below.
Proper citation: NIF Data Federation (RRID:SCR_004834) Copy
http://titan.biotec.uiuc.edu/bee/honeybee_project.htm
A database integrating data from the bee brain EST sequencing project with data from sequencing and gene research projects from other organisms, primarily the fruit fly Drosophila melanogaster. The goal of Bee-ESTdb is to provide updated information on the genes of the honey bee, currently using annotation primarily from flies to suggest cellular roles, biological functions, and evolutionary relationships. The site allows searches by sequence ID, EST annotations, Gene Ontology terms, Contig ID and using BLAST. Very nice resource for those interested in comparative genomics of brain. A normalized unidirectional cDNA library was made in the laboratory of Prof. Bento Soares, University of Iowa. The library was subsequently subtracted. Over 20,000 cDNA clones were partially sequenced from the normalized and subtracted libraries at the Keck Center, resulting in 15,311 vector-trimmed, high-quality, sequences with an average read length of 494 bp. and average base-quality of 41. These sequences were assembled into 8966 putatively unique sequences, which were tested for similarity to sequences in the public databases with a variety of BLAST searches. The Clemson University Genomics Institute is the distributor of these public domain cDNA clones. For information on how to purchase an individual clone or the entire collection, please contact www.genome.clemson.edu/orders/ or generobi (at) life.uiuc.edu.
Proper citation: Honey Bee Brain EST Project (RRID:SCR_002389) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.