Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 827 results
Snippet view Table view Download 827 Result(s)
Click the to add this resource to a Collection

https://kona.nhgri.nih.gov/mnemiopsis/

Portal to obtain genomic information on Mnemiopsis. Data available provide annotations and other key biological information not available elsewhere. Used to advance research projects aimed at understanding phylogenetic diversity and evolution of proteins that play fundamental role in metazoan development. Collection of sequenced, assembled, annotated, and performed preliminary analysis of genome of Mnemiopsis.

Proper citation: Mnemiopsis Genome Project Portal (RRID:SCR_018293) Copy   


http://www.genome.jp/kegg/expression/

Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.

Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy   


  • RRID:SCR_001395

    This resource has 10+ mentions.

http://www.well.ox.ac.uk/happy/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).

Proper citation: Happy (RRID:SCR_001395) Copy   


  • RRID:SCR_001587

http://neuronalarchitects.com/ibiofind.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.

Proper citation: iBIOFind (RRID:SCR_001587) Copy   


  • RRID:SCR_001757

    This resource has 10000+ mentions.

Issue

http://www.nitrc.org/projects/plink

Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.

Proper citation: PLINK (RRID:SCR_001757) Copy   


  • RRID:SCR_002047

    This resource has 100+ mentions.

http://www.aspgd.org/

Database of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus including information about genes and proteins of Aspergillus nidulans and Aspergillus fumigatus; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Sgenus species. Also available are Gene Ontology (GO) and community resources. Based on the Candida Genome Database, the Aspergillus Genome Database is a resource for genomic sequence data and gene and protein information for Aspergilli. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). Search options allow you to: *Search AspGD database using keywords. *Find chromosomal features that match specific properties or annotations. *Find AspGD web pages using keywords located on the page. *Find information on one gene from many databases. *Search for keywords related to a phenotype (e.g., conidiation), an allele (such as veA1), or an experimental condition (e.g., light). Analysis and Tools allow you to: *Find similarities between a sequence of interest and Aspergillus DNA or protein sequences. *Display and analyze an Aspergillus sequence (or other sequence) in many ways. *Navigate the chromosomes set. View nucleotide and protein sequence. *Find short DNA/protein sequence matches in Aspergillus. *Design sequencing and PCR primers for Aspergillus or other input sequences. *Display the restriction map for a Aspergillus or other input sequence. *Find similarities between a sequence of interest and fungal nucleotide or protein sequences. AspGD welcomes data submissions.

Proper citation: ASPGD (RRID:SCR_002047) Copy   


http://www.doe-mbi.ucla.edu/

The UCLA-DOE Institute for Genomics and Proteomics carries out research in bioenergy, structural biology, genomics and proteomics, consistent with the research mission of the United States Department of Energy. Major interests of the 12 Principal Investigators and 9 Associate Members include systems approaches to organisms, structural biology, bioinformatics, and bioenergetic systems. The Institute sponsors 5 Core Technology Centers, for X-ray and NMR structural determination, bioinformatics and computation, protein expression and purification, and biochemical instrumentation. Services offered by this Institute: - Databases: * DIP (The Database of Interacting Proteins): The DIPTM database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. * ProLinks Database of Functional Linkages: The Prolinks database is a collection of inference methods used to predict functional linkages between proteins. These methods include the Phylogenetic Profile method which uses the presence and absence of proteins across multiple genomes to detect functional linkages; the Gene Cluster method, which uses genome proximity to predict functional linkage; Rosetta Stone, which uses a gene fusion event in a second organism to infer functional relatedness; and the Gene Neighbor method, which uses both gene proximity and phylogenetic distribution to infer linkage. - Data-to-Structure Servers: * SAVEs Structure Verification Server * Merohedral Twinning Test Server * SER Surface Entropy Reduction Server * VERIFY3D Structure Verification Server * ERRAT Structure Verification Server - Structure-to-Function Servers: * ProKnow Protein Functionator * Hot Patch Functional Site Locator

Proper citation: University of California at Los Angeles - Department of Energy Institute for Genomics and Proteomics (RRID:SCR_001921) Copy   


  • RRID:SCR_002142

    This resource has 500+ mentions.

https://www.snpstats.net/

A web-based application designed from a genetic epidemiology point of view to analyze association studies using single nucleotide polymorphisms (SNPs). For each selected SNP, you will receive: * Allele and genotype frequencies * Test for Hardy-Weinberg equilibrium * Analysis of association with a response variable based on linear or logistic regression * Multiple inheritance models: co-dominant, dominant, recessive, over-dominant and additive * Analysis of interactions (gene-gene or gene-environment) If multiple SNPs are selected: * Linkage disequilibrium statistics * Haplotype frequency estimation * Analysis of association of haplotypes with the response * Analysis of interactions (haplotypes-covariate)

Proper citation: SNPSTATS (RRID:SCR_002142) Copy   


http://www.ncbi.nlm.nih.gov/HTGS/

Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.

Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy   


  • RRID:SCR_002223

    This resource has 1+ mentions.

https://arvados.org/

Bioinformatics platform for storing, organizing, processing, and sharing genomic and other biomedical big data. Designed to make it easier for bioinformaticians to develop analyses, developers to create genomic web applications and IT administers to manage large-scale compute and storage genomic resources. Designed to run on top of cloud operating systems such as Amazon Web Services and OpenStack. Currently, there are implementations that work on AWS and Xen+Debian/Ubuntu. Functionally, Arvados has two major sets of capabilities: (a) data management and (b) compute management.

Proper citation: Arvados (RRID:SCR_002223) Copy   


http://www.ark-genomics.org/

Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.

Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy   


  • RRID:SCR_002105

    This resource has 10000+ mentions.

http://htslib.org/

Original SAMTOOLS package has been split into three separate repositories including Samtools, BCFtools and HTSlib. Samtools for manipulating next generation sequencing data used for reading, writing, editing, indexing,viewing nucleotide alignments in SAM,BAM,CRAM format. BCFtools used for reading, writing BCF2,VCF, gVCF files and calling, filtering, summarising SNP and short indel sequence variants. HTSlib used for reading, writing high throughput sequencing data.

Proper citation: SAMTOOLS (RRID:SCR_002105) Copy   


  • RRID:SCR_000165

    This resource has 1+ mentions.

http://sourceforge.net/projects/gmato/files/?source=navbar

A software tool used for simple sequence repeats (SSR) or microsatellite characterization. It also facilitates SSR marker design on a genomic scale, microsatellite mining at any length, and comprehensive statistical analysis for DNA sequences in any genome at any size. Analysis parameters are customizable.

Proper citation: GMATo (RRID:SCR_000165) Copy   


  • RRID:SCR_000747

    This resource has 10+ mentions.

http://genboree.org

A software application and database viewing system for genomic research, more specifically formulti-genome comparison and pattern discovery via genome self-comparison. Data are available for a range of species including Human Chr3, Human Chr12, Sea Urchin, Tribolium, and cow. The Genboree Discovery System is the largest software system developed at the bioinformatics laboratory at Baylor in close collaboration with the Human Genome Sequencing Center. Genboree is a turnkey software system for genomic research. Genboree is hosted on the Internet and, as of early 2007, the number of registered users exceeds 600. While it can be configured to support almost any genome-centric discovery process, a number of configurations already exist for specific applications. Current focus is on enabling studies of genome variation, including array CGH studies, PCR-based resequencing, genome resequencing using comparative sequence assembly, genome remapping using paired-end tags and sequences, genome analysis and annotation, multi-genome comparison and pattern discovery via genome self-comparison. Genboree database and visualization settings, tools, and user roles are configurable to fit the needs of specific discovery processes. Private permanent project-specific databases can be accessed in a controlled way by collaborators via the Internet. Project-specific data is integrated with relevant data from public sources such as genome browsers and genomic databases. Data processing tools are integrated using a plug-in model. Genboree is extensible via flexible data-exchange formats to accommodate project specific tools and processing steps. Our Positional Hashing method, implemented in the Pash program, enables extremely fast and accurate sequence comparison and pattern discovery by employing low-level parallelism. Pash enables fast and sensitive detection of orthologous regions across mammalian genomes, and fast anchoring of hundreds of millions of short sequences produced by next-generation sequencing technologies. We are further developing the Pash program and employing it in the context of various discovery pipelines. Our laboratory participates in the pilot stage of the TCGA (The Cancer Genome Atlas) project. We aim to develop comprehensive, rapid, and economical methods for detecting recurrent chromosomal aberrations in cancer using next-generation sequencing technologies. The methods will allow detection of recurrent chromosomal aberrations in hundreds of small (

Proper citation: Genboree Discovery System (RRID:SCR_000747) Copy   


http://franklin.imgen.bcm.tmc.edu/

The mission of the Baylor College of Medicine - Shaw Laboratory is to apply methods of statistics and bioinformatics to the analysis of large scale genomic data. Our vision is data integration to reveal the underlying connections between genes and processes in order to cure disease and improve healthcare.

Proper citation: Baylor College of Medicine - Shaw Laboratory (RRID:SCR_000604) Copy   


http://www.chargeconsortium.com/

Consortium formed to facilitate genome-wide association study meta-analyses and replication opportunities among multiple large and well-phenotyped longitudinal cohort studies. A bibliography of CHARGE publications is available. Its founding member cohorts include: * Age, Gene, Environment, Susceptibility Study -- Reykjavik * Atherosclerosis Risk in Communities Study * Cardiovascular Health Study * Framingham Heart Study * Rotterdam Study Additional core cohorts include: * Coronary Artery Risk Development in Young Adults * Family Heart Study * Health, Aging, and Body Composition Study * Jackson Heart Study * Multi-Ethnic Study of Atherosclerosis

Proper citation: Cohorts for Heart and Aging Research in Genomic Epidemiology (RRID:SCR_004034) Copy   


  • RRID:SCR_003827

http://www.europeanlung.org/en/projects-and-research/projects/airprom/

Consortium focused on developing computer and physical models of the airway system for patients with asthma and chronic obstructive pulmonary disease (COPD). Developing accurate models will better predict how asthma and COPD develop, since current methods can only assess the severity of disease. They aim to bridge the gaps in clinical management of airways-based disease by providing reliable models that predict disease progression and the response to treatment for each person with asthma or COPD. A data management platform provides a secure and sustainable infrastructure that semantically integrates the clinical, physiological, genetic, and experimental data produced with existing biomedical knowledge from allied consortia and public databases. This resource will be available for analysis and modeling, and will facilitate sharing, collaboration and publication within AirPROM and with the broader community. Currently the AirPROM knowledge portal is only accessible by AirPROM partners.

Proper citation: AirPROM (RRID:SCR_003827) Copy   


https://www.med.unc.edu/pgc/

Consortium conducting meta-analyses of genome-wide genetic data for psychiatric disease. Focused on autism, attention-deficit hyperactivity disorder, bipolar disorder, major depressive disorder, schizophrenia, anorexia nervosa (AN), Tourette syndrome (TS), and obsessive-compulsive disorder (OCD). Used to investigate common single nucleotide polymorphisms (SNPs) genotyped on commercial arrays, structural variation (copy number variation) and uncommon or rare genetic variation. To participate you are asked to upload data from your study to central computer used by this consortium. Genetic Cluster Computer serves as data warehouse and analytical platform for this study . When data from your study have been incorporated, account will be provided on central server and access to all GWAS genotypes, phenotypes, and meta-analytic results relevant to deposited data and participation aims. NHGRI GWAS Catalog contains updated information about all GWAS in biomedicine, and is usually excellent starting point to find comprehensive list of studies. Files can be obtained by any PGC member for any disease to which they contributed data. These files can also be obtained by application to NIMH Genetics Repository. Individual-level genotype and phenotype data requires application, material transfer agreement, and informed consent consideration. Some datasets are also in controlled-access dbGaP and Wellcome Trust Case-Control Consortium repositories. PGC members can also receive back cleaned and imputed data and results for samples they contributed to PGC analyses.

Proper citation: Psychiatric Genomics Consortium (RRID:SCR_004495) Copy   


  • RRID:SCR_004723

http://www.tbidx.net

Network evaluating consensus-based common data elements (CDE) for traumatic brain injury (TBI) and psychological health (TBI-CDE, www.commondataelements.ninds.nih.gov/TBI.aspx) while extensively phenotyping a cohort of TBI patients across the injury spectrum from concussion to coma. Institutions that participate in the TBI Network will be able to track the outcomes of patients through a 3, 6 and 12-month followup program and compare outcomes with other participating institutions. For the three acute care centers, patients were enrolled that presented to the emergency department within 24 hours of head injury and required computed tomography (CT). For the rehabilitation center, referrals from acute hospitals were enrolled. Patients were consented to participate in components: clinical profile; blood draws for measurement of proteomic and genomic markers; 3T MRI within 2 weeks; three-month Glasgow Outcome Scale-Extended (GOS-E); and six-month TBI-CDE Core outcome assessments. A web-enabled database, imaging repository, and biospecimen bank was developed using the TBI-CDE recommendations. A total of 605 patients were enrolled. Of these subjects, 88% had a GCS 13-15, 5% had a GCS 9-12, and 7% had a GCS of 8 or less. Three-month GOS-E''s were obtained for 78% of the patients. Comprehensive 6-month outcome measures, including PTSD assessment, are ongoing until September 2011. Blood specimens were collected from 450 patients. Initial CTs for 605 patients and 235 patients with 3T MRI studies were transferred to an imaging repository. The TRACK TBI Network will provide qualified institutions access to a web-based version of key forms in tracking TBI outcomes for Quality Improvement and institutional benchmarking.

Proper citation: TRACK TBI Network (RRID:SCR_004723) Copy   


http://www.lajollaneuroscience.org/

Our NINDS Center Core Grant supports centralized resources and facilities shared by investigators with existing NINDS-funded research projects. Our Center is composed of three research cores, each of which will enrich the effectiveness of ongoing research, and promote new research directions. The three Core facilities support Electrophysiology, Neuropathology / Histology, and High-Throughput/High-Content Chemical and Genomic Library screening. By making these important Core Services available to the local Neuroscience community, the La Jolla Neurosciences Program hopes to promote the study of how the nervous system works and develop treatments for nervous system diseases. The cores and their services are available to La Jolla neuroscientists. Core services are available to NINDS-supported neuroscience projects from local investigators as well as young neuroscientists prior to obtaining their first NIH-funded grant. * Electrophysiology: SBMRI Electrophysiology ** The Electrophysiology Core consists of the Sanford-Burnham Electrophysiology Facility. This facility can perform patch-clamp intracellular and extracellular field recordings on a range of material including cultured cells and brain slices. The Sanford-Burnham facility emphasizes electrophysiological analysis of cultured cells and the detailed electrical properties of channels, receptors and recombinant proteins expressed in Xenopus oocytes or mammalian cells. * Neuropathology: UCSD Neuropathology ** The Neuropathology laboratory applies immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy to analysis of neurological disease in animal models. * Chemical Library Screening: SBIMR Assay Development, SBIMR Chemical Library Screening, SBIMR Cheminformatics, SBIMR High-content Screening ** The Chemical Library Screening core offers high-throughput screening (HTS) of biochemical and cell-based array using traditional HTS readouts and automated microscopy for high-content screening (HCS)> These facilities also offer array development and screening, as well as cheminformatics and medicinal chemistry., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: La Jolla Interdisciplinary Neurosciences Center (RRID:SCR_002772) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X