Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A database of brain neuroanatomic volumetric observations spanning various species, diagnoses, and structures for both individual and group results. A major thrust effort is to enable electronic access to the results that exist in the published literature. Currently, there is quite limited electronic or searchable methods for the data observations that are contained in publications. This effort will facilitate the dissemination of volumetric observations by making a more complete corpus of volumetric observations findable to the neuroscience researcher. This also enhances the ability to perform comparative and integrative studies, as well as metaanalysis. Extensions that permit pre-published, non-published and other representation are planned, again to facilitate comparative analyses. Design strategy: The principle organizing data structure is the "publication". Publications report on "groups" of subjects. These groups have "demographic" information as well as "volume" information for the group as a whole. Groups are comprised of "individuals", which also have demographic and volume information for each of the individuals. The finest-grained data structure is the "individual volume record" which contains a volume observation, the units for the observation, and a pointer to the demographic record for individual upon which the observation is derived. A collection of individual volumes can be grouped into a "group volume" observation; the group can be demographically characterized by the distribution of individual demographic observations for the members of the group.
Proper citation: Internet Brain Volume Database (RRID:SCR_002060) Copy
http://epilepsy.uni-freiburg.de/database
A comprehensive database for human surface and intracranial EEG data that is suitable for a broad range of applications e.g. of time series analyses of brain activity. Currently, the EU database contains annotated EEG datasets from more than 200 patients with epilepsy, 50 of them with intracranial recordings with up to 122 channels. Each dataset provides EEG data for a continuous recording time of at least 96 hours (4 days) at a sample rate of up to 2500 Hz. Clinical patient information and MR imaging data supplement the EEG data. The total duration of EEG recordings included execeeds 30000 hours. The database is composed of different modalities: Binary files with EEG recording / MR imaging data and Relational database for supplementary meta data.
Proper citation: EPILEPSIE database (RRID:SCR_003179) Copy
https://vpixx.com/products/viewpixx-3d/
VIEWPixx /3D (VPixx Technologies) is a 1920x1080 resolution, 120 Hz, calibrated research-grade LCD monitor. It is designed for stereoscopic (3D) stimulus presentation and other high-dynamic vision-science paradigms where deterministic timing and synchronized I/O are critical. It pairs fast-response industrial TN LCD glass with a custom VPixx panel/video controller and a scanning direct-RGB LED backlight engineered to reduce motion artifacts/ghosting/crosstalk, and to improve spatial uniformity, while bypassing consumer “enhancement” processing for predictable experimental output. For stereoscopic workflows, VIEWPixx /3D supports 120 Hz frame-sequential 3D (60 Hz/eye) when used with 3DPixx active shutter glasses (RF emitter + glasses kit), and it can provide a dual-link DVI console output to mirror the participant's view without adding GPU load. The system is also a synchronized display + acquisition toolbox: integrated button-box interface, 24-channel TTL triggers, stereo audio I/O, and a full analog I/O subsystem are implemented on the same board as video control to enable microsecond-precision synchronization to video refresh—useful for EEG triggers, reaction-time tasks, and other timing-sensitive paradigms.In terms of bit depth, the VIEWPixx /3D is native 8 bits per colour, with support fot 10-bit resolution per RGB channel via custom video modes.
Proper citation: VIEWPixx /3D (RRID:SCR_009646) Copy
http://www.paradigmexperiments.com
Software application for millisecond accurate experimental control for cognitive neuroscience, psychology and linguistics research. Presents text, images, sounds, movies, self-paced reading trials and rating scales. An integrated Python scripting API is available. Joystick and microphone response are available. Supports button boxes from PST, Cedrus, fORP and custom built response boxes. Paradigm can detect fMRI triggers through serial and parallel ports. Includes sample experiments that implement many of the most popular experiment designs., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Paradigm (RRID:SCR_009634) Copy
https://www.nitrc.org/projects/neurolabels
This resource was created to host descriptions of protocols, definitions and rules for the reliable identification and localization of human brain anatomy and discussions of best practices in brain labeling. Project for manual anatomical labeling of human brain MRI data, and the visual presentation of labeled brain images.
Proper citation: BrainColor: Collaborative Open Labeling Online Resource (RRID:SCR_006377) Copy
http://www.pstnet.com/software.cfm?ID=96
Designed for use in an MRI simulator, MoTrak software uses Ascension Technology?s Flock of Birds. The sensor attaches to the subject?s head and determines the position of the head in space relative to the transmitter. The sensor records angular rotations as well as positional displacements from an initially calibrated position. This information is displayed and logged by the program in real-time, allowing observation of head motion in an MRI simulator. In the simulator, the participant can simultaneously be habituated to the MRI environment, while being trained to remain still via feedback from the MoTrak system.
Proper citation: MoTrak Head Motion Tracking System (RRID:SCR_009607) Copy
http://cocomac.g-node.org/main/index.php?
Online access (html or xml) to structural connectivity ("wiring") data on the Macaque brain. The database has become by far the largest of its kind, with data extracted from more than four hundred published tracing studies. The main database, contains data from tracing studies on anatomical connectivity in the macaque cerebral cortex. Also available are a variety of tools including a graphical simulation workbench, map displays and the CoCoMac-Paxinos-3D viewer. Submissions are welcome. To overcome the problem of divergent brain maps ORT (Objective Relational Transformation) was developed, an algorithmic method to convert data in a coordinate- independent way based on logical relations between areas in different brain maps. CoCoMac data is used to analyze the organization of the cerebral cortex, and to establish its structure- function relationships. This includes multi-variate statistics and computer simulation of models that take into account the real anatomy of the primate cerebral cortex. This site * Provides full, scriptable open access to the data in CoCoMac (you must adhere to the citation policy) * Powers the graphical interface to CoCoMac provided by the Scalable Brain Atlas * Sports an extensive search/browse wizard, which automatically constructs complex search queries and lets you further explore the database from the results page. * Allows you to get your hands dirty, by using the custom SQL query service. * Displays connectivity data in tabular form, through the axonal projections service. CoCoMac 2 was initiated at the Donders Institute for Brain, Cognition and Behaviour, and is currently supported by the German neuroinformatics node and the Computational and Systems Neuroscience group at the Juelich research institute.
Proper citation: CoCoMac (RRID:SCR_007277) Copy
Project aimed at making neuroimaging data sets of brain freely available to scientific community. By compiling and freely distributing neuroimaging data sets, future discoveries in basic and clinical neuroscience are facilitated.
Proper citation: Open Access Series of Imaging Studies (RRID:SCR_007385) Copy
http://neuromorphometrics.com/?page_id=23
Collection of neuroanatomically labeled MRI brain scans, created by neuroanatomical experts. Regions of interest include the sub-cortical structures (thalamus, caudate, putamen, hippocampus, etc), along with ventricles, brain stem, cerebellum, and gray and white matter and sub-divided cortex into parcellation units that are defined by gyral and sulcal landmarks.
Proper citation: Manually Labeled MRI Brain Scan Database (RRID:SCR_009604) Copy
A large multi-site pediatric MRI and genetics data resource to facilitate studies of the genomic landscape of the developing human brain. It includes information about the developing mental and emotional functions of the children to understand the genetic basis of individual differences in brain structure and connectivity, cognition, and personality. Investigators on the project are studying 1400 children between the ages of 3 and 20 years so that links between genetic variation and developing patterns of brain connectivity can be examined. Investigators interested in the effects of a particular gene will be able to search the database for any brain areas or connections between areas that differ as a function of variation in a particular gene, and also to determine if the genes appear to affect the course of brain development at some point during childhood. A data exploration tool has been created for mapping and analyzing MRI data sets collected for PING and related developmental studies. Approved investigators will be able to view raw image sets and derived 3D brain maps of MRI and DTI data, conduct hypothesis testing, and graph brain area measures as they change across the time course of development. PING Cores * Coordinating Core: Functions include project management, screening of participants and maintaining the database * Neuroimaging Core: applying a standardized high-resolution structural MRI protocol involving 3-D T1-weighted scans, a T2-weighted volume, and a set of diffusion-weighted scans with multiple b values and diffusion directions, scans to estimate MRI relaxation rates, and gradient echo EPI scans for resting state fMRI. Importantly, adaptive motion compensation, using ����??PROMO����??, a novel real-time motion correction algorithm will be used. Specific PING protocols for each scanner manufacturer: ** PING MRI Protocol - GE ** PING MRI Protocol - Philips ** PING MRI Protocol - Siemens * Assessment Core: Cognitive assessments for the PING project are conducted using the NIH Toolbox for Cognition. * Genomics Core: functions as a central repository for receipt of saliva samples collected for each study participant. Once received, samples are catalogued, maintained, and DNA is extracted using state-of-the-field laboratory techniques. Ultimately, genome-wide genotyping is performed on the extracted DNA using the Illumina Human660W-Quad BeadChip. PING involves 10 sites throughout the country including UCSD, University of Hawaii, Scripps Genomics, UCLA, UC Davis, Kennedy Krieger Institute/Johns Hopkins, Sacker Institute/Cornell University, University of Massachusetts, Massachusetts General Hospital/Harvard, and Yale. Families who may want to participate in the study, or others who want to know more about it, may email questions to ping (at) ucsd.edu.
Proper citation: Pediatric Imaging Neurocognition and Genetics (RRID:SCR_008953) Copy
http://www.nitrc.org/projects/pcp/
A project which systematically preprocess the data from the 1000 Functional Connectomes Project (FCP) and International Neuroimaging Data-sharing Initiative (INDI) and openly share the results. Data is currently hosted in an Amazon Web Services Public S3 Bucket and at NITRC.
Proper citation: Preprocessed Connectomes Project (RRID:SCR_014162) Copy
http://www.nitrc.org/projects/pd3/
THIS RESOURCE IS NO LONGER IN SERVICE, documented Jan. 5, 2016. Tools will be available for biomedical data mining and visualization as well as linkages to Google Maps and other online resources.
Proper citation: Parkinsons Disease Discovery Database (RRID:SCR_014160) Copy
http://www.nitrc.org/projects/asdb/
Database as an open science framework with a scientific data extracted from scientific literature about various altered states of consciousness assessed with questionnaires. Used to compare what experiences are elicited by different drugs and non-pharmacological methods that induce altered states to help to understand human consciousness functions. Is listed by Neuroimaging Informatics Tools.
Proper citation: Altered States Database (RRID:SCR_016350) Copy
http://www.nitrc.org/projects/volbrain/
Software tool as MRI brain segmentation system to obtain automatically volumetric brain information from RI data. Works in automatic manner and is able to provide brain structure volumes without any human interaction.
Proper citation: volBrain (RRID:SCR_021020) Copy
http://www.biological-networks.org/pubs/suppl/sinomo/
Analysis-tool which identifies singular node motifs in a network. Network nodes can be described by node-motifs. It is an improvement to the method described in Costa et al. (2009).
Proper citation: SINOMO (RRID:SCR_005286) Copy
Realistic simulated MEG datasets ranging from basic sensory to oscillatory sets that mimic functional connectivity; as well as basic visual, auditory, and somatosensory empirical sets. The simulated sets were created for the purpose of testing analysis algorithms across the different MEG systems when the truth is known. MEG baseline recordings were obtained from 5 healthy participants, using three MEG systems: VSM/CTF Omega, Elekta Neuromag Vectorview, 4-D Magnes 3600. Simulated signals were embedded within the CTF and Neuromag 306 baseline recordings (4-D to be added). Participant MRIs are available. Averaged simulation files are available as netcdf files. Neuromag 306 averaged simulations are also available in fif format. Also available: single trials of data where the simulated signal is jittered about a mean value, continuous fif files where the simulated signal is marked by a trigger, and simulations with oscillations added to mimic functional connectivity.
Proper citation: MEGSIM (RRID:SCR_002420) Copy
A C++ software framework to develop, simulate and run magnetic resonance sequences on different platforms.
Proper citation: Object-Oriented Development Interface for NMR (RRID:SCR_005974) Copy
A Monte Carlo (MC) solver for photon migration in 3D turbid media. Different from existing MC software designed for layered (such as MCML) or voxel-based media (such as MMC or tMCimg), MMC can represent a complex domain using a tetrahedral mesh. This not only greatly improves the accuracy of the solutions when modeling objects with smooth/complex boundaries, but also gives an efficient way to sample the problem domain to use less memory. The current version of MMC support multi-threaded programming and can give a almost proportional speed-up when using multiple CPU cores.
Proper citation: Mesh-based Monte Carlo (MMC) (RRID:SCR_006950) Copy
http://www.pstnet.com/eprime.cfm
A suite of applications to fulfill all of your computerized experiment needs. Used by more than 15,000 professionals in the research community, E-Prime provides a truly easy-to-use environment for computerized experiment design, data collection, and analysis. E-Prime provides millisecond precision timing to ensure the accuracy of your data. E-Prime's flexibility to create simple to complex experiments is ideal for both novice and advanced users. The E-Prime suite of applications includes: * E-Studio ? Drag and drop graphical interface for experiment design * E-Basic ? Underlying scripting language of E-Prime * E-Run ? Once the experiment is generated with a single click, E-Run affords you the millisecond precision of stimulus presentation, synchronizations, and data collection. * E-Merge ? Merges your single session data files for group analysis * E-DataAid ? Data management utility * E-Recovery ? Recovers data files
Proper citation: E-Prime (RRID:SCR_009567) Copy
https://github.com/hjmjohnson/DTIPrep
DTIPrep performs a Study-specific Protocol based automatic pipeline for DWI/DTI quality control and preparation. This is both a GUI and command line tool. The configurable pipeline includes image/diffusion information check, padding/Cropping of data, slice-wise, interlace-wise and gradient-wise intensity and motion check, head motion and Eddy current artifact correction, and DTI computing.
Proper citation: DWI/DTI Quality Control Tool: DTIPrep (RRID:SCR_009562) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.