Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006794

    This resource has 50+ mentions.

https://cansar.icr.ac.uk/

canSAR is an integrated database that brings together biological, chemical, pharmacological (and eventually clinical) data. Its goal is to integrate this data and make it accessible to cancer research scientists from multiple disciplines, in order to help with hypothesis generation in cancer research and support translational research. This cancer research and drug discovery resource was developed to utilize the growing publicly available biological annotation, chemical screening, RNA interference screening, expression, amplification and 3D structural data. Scientists can, in a single place, rapidly identify biological annotation of a target, its structural characterization, expression levels and protein interaction data, as well as suitable cell lines for experiments, potential tool compounds and similarity to known drug targets. canSAR has, from the outset, been completely use-case driven which has dramatically influenced the design of the back-end and the functionality provided through the interfaces. The Web interface provides flexible, multipoint entry into canSAR. This allows easy access to the multidisciplinary data within, including target and compound synopses, bioactivity views and expert tools for chemogenomic, expression and protein interaction network data.

Proper citation: canSAR (RRID:SCR_006794) Copy   


  • RRID:SCR_006941

    This resource has 10+ mentions.

http://geneontology.org/docs/tools-overview/

Collection of tools developed by GO Consortium and by third parties. Tools are listed by category or alphabetically and continue to be improved and expanded.

Proper citation: Gene Ontology Tools (RRID:SCR_006941) Copy   


  • RRID:SCR_006937

    This resource has 10+ mentions.

http://autismkb.cbi.pku.edu.cn/

Genetic factors contribute significantly to ASD. AutismKB is an evidence-based knowledgebase of Autism spectrum disorder (ASD) genetics. The current version contains 2193 genes (99 syndromic autism related genes and 2135 non-syndromic autism related genes), 4617 Copy Number Variations (CNVs) and 158 linkage regions associated with ASD by one or more of the following six experimental methods: # Genome-Wide Association Studies (GWAS); # Genome-wide CNV studies; # Linkage analysis; # Low-scale genetic association studies; # Expression profiling; # Other low-scale gene studies. Based on a scoring and ranking system, 99 syndromic autism related genes and 383 non-syndromic autism related genes (434 genes in total) were designated as having high confidence. Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with a prevalence of 1.0-2.6%. The three core symptoms of ASD are: # impairments in reciprocal social interaction; # communication impairments; # presence of restricted, repetitive and stereotyped patterns of behavior, interests and activities.

Proper citation: AutismKB (RRID:SCR_006937) Copy   


  • RRID:SCR_008870

    This resource has 100+ mentions.

http://go.princeton.edu/cgi-bin/GOTermFinder

The Generic GO Term Finder finds the significant GO terms shared among a list of genes from an organism, displaying the results in a table and as a graph (showing the terms and their ancestry). The user may optionally provide background information or a custom gene association file or filter evidence codes. This tool is capable of batch processing multiple queries at once. GO::TermFinder comprises a set of object-oriented Perl modules GO::TermFinder can be used on any system on which Perl can be run, either as a command line application, in single or batch mode, or as a web-based CGI script. This implementation, developed at the Lewis-Sigler Institute at Princeton, depends on the GO-TermFinder software written by Gavin Sherlock and Shuai Weng at Stanford University and the GO:View module written by Shuai Weng. It is made publicly available through the GMOD project. The full source code and documentation for GO:TermFinder are freely available from http://search.cpan.org/dist/GO-TermFinder/. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Generic GO Term Finder (RRID:SCR_008870) Copy   


http://apid.dep.usal.es

APID Interactomes (Agile Protein Interactomes DataServer) provides information on the protein interactomes of numerous organisms, based on the integration of known experimentally validated protein-protein physical interactions (PPIs). The interactome data includes a report on quality levels and coverage over the proteomes for each organism included. APID integrates PPIs from primary databases of molecular interactions (BIND, BioGRID, DIP, HPRD, IntAct, MINT) and also from experimentally resolved 3D structures (PDB) where more than two distinct proteins have been identified. This collection references protein interactors, through a UniProt identifier.

Proper citation: Agile Protein Interactomes DataServer (RRID:SCR_008871) Copy   


  • RRID:SCR_008906

    This resource has 10+ mentions.

http://plantgrn.noble.org/LegumeIP/

LegumeIP is an integrative database and bioinformatics platform for comparative genomics and transcriptomics to facilitate the study of gene function and genome evolution in legumes, and ultimately to generate molecular based breeding tools to improve quality of crop legumes. LegumeIP currently hosts large-scale genomics and transcriptomics data, including: * Genomic sequences of three model legumes, i.e. Medicago truncatula, Glycine max (soybean) and Lotus japonicus, including two reference plant species, Arabidopsis thaliana and Poplar trichocarpa, with the annotation based on UniProt TrEMBL, InterProScan, Gene Ontology and KEGG databases. LegumeIP covers a total 222,217 protein-coding gene sequences. * Large-scale gene expression data compiled from 104 array hybridizations from L. japonicas, 156 array hybridizations from M. truncatula gene atlas database, and 14 RNA-Seq-based gene expression profiles from G. max on different tissues including four common tissues: Nodule, Flower, Root and Leaf. * Systematic synteny analysis among M. truncatula, G. max, L. japonicus and A. thaliana. * Reconstruction of gene family and gene family-wide phylogenetic analysis across the five hosted species. LegumeIP features comprehensive search and visualization tools to enable the flexible query on gene annotation, gene family, synteny, relative abundance of gene expression.

Proper citation: LegumeIP (RRID:SCR_008906) Copy   


http://meme.nbcr.net/meme/cgi-bin/gomo.cgi

Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy   


http://rgd.mcw.edu/rgdCuration/?module=portal&func=show&name=renal

An integrated resource for information on genes, QTLs and strains associated with a variety of kidney and renal system conditions such as Renal Hypertension, Polycystic Kidney Disease and Renal Insufficiency, as well as Kidney Neoplasms.

Proper citation: Renal Disease Portal (RRID:SCR_009030) Copy   


http://vortex.cs.wayne.edu/projects.htm#OE2GO

Onto-Express is a web-based tool in the Onto-Tools suite that performs automated function profiling for a list of differentially expressed genes. However, Onto-Express does not support functional profiling for the organisms that do not have annotations in public domain, or use of custom (i.e. user-defined) ontologies. This limitation is also true for most of the other existing tools for functional profiling, which means that researchers working with uncommon organisms and/or new annotations or ontologies may be forced to construct such profiles manually. Onto-Express To Go (OE2GO) is a new tool added to the Onto-Tools ensemble to address these issues. OE2GO is built on top of OE to leverage its existing functionality. In OE2GO, the users now have an option to use either the Onto-Tools database as a source of functional annotations or provide their own annotations in a separate file. Currently, OE2GO supports annotation file in the Gene Ontology format. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Onto-Express To Go (OE2GO) (RRID:SCR_008854) Copy   


http://genespeed.ccf.org/home/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.

Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy   


  • RRID:SCR_002834

    This resource has 10+ mentions.

http://www.greenphyl.org/

A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.

Proper citation: GreenPhylDB (RRID:SCR_002834) Copy   


  • RRID:SCR_002729

    This resource has 1+ mentions.

http://funsimmat.bioinf.mpi-inf.mpg.de

FunSimMat is a comprehensive resource of semantic and functional similarity values. It allows ranking disease candidate proteins for OMIM diseases and searching for functional similarity values for proteins (extracted from UniProt), and protein families (Pfam, SMART). FunSimMat provides several different semantic and functional similarity measures for each protein pair using the Gene Ontology annotation from UniProtKB and the Gene Ontology Annotation project at EBI (GOA). There are several search options available: Disease candidate prioritization: * Rank candidate proteins using any OMIM disease entry * Compare a list of proteins to any OMIM disease entry * Compare all human proteins to any OMIM disease entry Functional similarity: * Compare one protein / protein family to a list of proteins / protein families * Compare a list of GO terms to a list of proteins / protein families Semantic similarity: * For a list of GO terms, FunSimMat performs an all-against-all comparison and displays the semantic similarity values. FunSimMat provides an XML-RPC interface for performing automatic queries and processing of the results as well as a RestLike Interface. Platform: Online tool

Proper citation: FunSimMat (RRID:SCR_002729) Copy   


http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl

Database of embryonic expression patterns using a high throughput RNA in situ hybridization of the protein-coding genes identified in the Drosophila melanogaster genome with images and controlled vocabulary annotations. At the end of production pipeline gene expression patterns are documented by taking a large number of digital images of individual embryos. The quality and identity of the captured image data are verified by independently derived microarray time-course analysis of gene expression using Affymetrix GeneChip technology. Gene expression patterns are annotated with controlled vocabulary for developmental anatomy of Drosophila embryogenesis. Image, microarray and annotation data are stored in a modified version of Gene Ontology database and the entire dataset is available on the web in browsable and searchable form or MySQL dump can be downloaded. So far, they have examined expression of 7507 genes and documented them with 111184 digital photographs.

Proper citation: Patterns of Gene Expression in Drosophila Embryogenesis (RRID:SCR_002868) Copy   


http://function.princeton.edu/GOLEM/index.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented July 7, 2017. Welcome to the home of GOLEM: An interactive, graphical gene-ontology visualization, navigation,and analysis tool on the web. GOLEM is a useful tool which allows the viewer to navigate and explore a local portion of the Gene Ontology (GO) hierarchy. Users can also load annotations for various organisms into the ontology in order to search for particular genes, or to limit the display to show only GO terms relevant to a particular organism, or to quickly search for GO terms enriched in a set of query genes. GOLEM is implemented in Java, and is available both for use on the web as an applet, and for download as a JAR package. A brief tutorial on how to use GOLEM is available both online and in the instructions included in the program. We also have a list of links to libraries used to make GOLEM, as well as the various organizations that curate organism annotations to the ontology. GOLEM is available as a .jar package and a macintosh .app for use on- or off- line as a stand-alone package. You will need to have Java (v.1.5 or greater) installed on your system to run GOLEM. Source code (including Eclipse project files) are also available. GOLEM (Gene Ontology Local Exploration Map)is a visualization and analysis tool for focused exploration of the gene ontology graph. GOLEM allows the user to dynamically expand and focus the local graph structure of the gene ontology hierarchy in the neighborhood of any chosen term. It also supports rapid analysis of an input list of genes to find enriched gene ontology terms. The GOLEM application permits the user either to utilize local gene ontology and annotations files in the absence of an Internet connection, or to access the most recent ontology and annotation information from the gene ontology webpage. GOLEM supports global and organism-specific searches by gene ontology term name, gene ontology id and gene name. CONCLUSION: GOLEM is a useful software tool for biologists interested in visualizing the local directed acyclic graph structure of the gene ontology hierarchy and searching for gene ontology terms enriched in genes of interest. It is freely available both as an application and as an applet.

Proper citation: GOLEM An interactive, graphical gene-ontology visualization, navigation, and analysis tool (RRID:SCR_003191) Copy   


  • RRID:SCR_005829

    This resource has 5000+ mentions.

http://www.ebi.ac.uk/Tools/pfa/iprscan/

Software package for functional analysis of sequences by classifying them into families and predicting presence of domains and sites. Scans sequences against InterPro's signatures. Characterizes nucleotide or protein function by matching it with models from several different databases. Used in large scale analysis of whole proteomes, genomes and metagenomes. Available as Web based version and standalone Perl version and SOAP Web Service.

Proper citation: InterProScan (RRID:SCR_005829) Copy   


  • RRID:SCR_005709

    This resource has 1000+ mentions.

http://genemania.org/

Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMANIA (RRID:SCR_005709) Copy   


  • RRID:SCR_005824

    This resource has 1+ mentions.

http://www.ebi.ac.uk/webservices/whatizit/info.jsf

A text processing system that allows you to do textmining tasks on text. It is great at identifying molecular biology terms and linking them to publicly available databases. Whatizit is also a Medline abstracts retrieval/search engine. Instead of providing the text by Copy&Paste, you can launch a Medline search. The abstracts that match your search criteria are retrieved and processed by a pipeline of your choice. Whatizit is also available as 1) a webservice and as 2) a streamed servlet. The webservice allows you to enrich content within your website in a similar way as in the wikipedia. The streamed servlet allows you to process large amounts of text.

Proper citation: Whatizit (RRID:SCR_005824) Copy   


  • RRID:SCR_005666

http://geneontology.svn.sourceforge.net/viewvc/geneontology/go-moose/

go-moose is intended as a replacement for the aging go-perl and go-db-perl Perl libraries. It is written using the object oriented Moose libraries. It can be used for performing a number of analyses on GO data, including the remapping of GO annotations to a selected subset of GO terms. Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: go-moose (RRID:SCR_005666) Copy   


http://www.dbfordummies.com/go.asp

Db for Dummies! is a small database that imports the Generic GO Slim. It allows data to be viewed in a tree. The Gene Ontology describes gene products in terms of their associated biological processes, cellular components and molecular functions. The Generic Slim Gene Ontology is a subset of the whole Gene Ontology. The slim version gives a broad overview and leaves out specific/fine grained terms. This example stores the slim version of the Gene Ontology (goslim_generic_obo) that can be downloaded from www.geneontology.org/GO.slims.shtml. Platform: Windows compatible

Proper citation: DBD - Slim Gene Ontology (RRID:SCR_005728) Copy   


  • RRID:SCR_005725

    This resource has 1+ mentions.

http://vortex.cs.wayne.edu/projects.htm#Onto-Translate

In the annotation world, the same piece of information can be stored and viewed differently across different databases. For instance, more than one Affymetrix probe ID can refer to the same GenBank sequence (accession number) and more than one nucleotide sequence from GenBank can be grouped in a single UniGene cluster. The result of Onto-Express depends on whether the input list contains Affymetrix probe IDs, GenBank accession numbers or UniGene cluster IDs. The user has to be aware of relations between the different forms of the data in order to interpret correctly the results. Even if the user is aware of the relationships and knows how to convert them, most existing tools allow conversions of individual genes. Onto-Translate is a tool that allows the user to perform easily such translations. Affymetrix probe IDs, etc., translate GO terms into other identifiers like GenBank accession number, Uniprot IDs. User account required. Platform: Online tool

Proper citation: Onto-Translate (RRID:SCR_005725) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X