Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 240 results
Snippet view Table view Download 240 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_006383

    This resource has 50+ mentions.

http://openfurther.org/

Data and knowledge management infrastructure for the new Center for Clinical and Translational Science (CCTS) at the University of Utah. This clinical cohort search tool is used to search across the University of Utah clinical data warehouse and the Utah Population Database for people who satisfy various criteria of the researchers. It uses the i2b2 front end but has a set of terminology servers, metadata servers and federated query tool as the back end systems. FURTHeR does on-the-fly translation of search terms and data models across the source systems and returns a count of results by unique individuals. They are extending the set of databases that can be queried.

Proper citation: FURTHeR (RRID:SCR_006383) Copy   


https://www.mdanderson.org/research/departments-labs-institutes/programs-centers/michale-e-keeling-center-for-comparative-medicine-and-research/national-center-for-chimpanzee-care.html

One of only four NCRR-supported centers with the capability to conduct biomedical research in the chimpanzee, it offers chimpanzee-derived cell lines, antibodies and other biological materials, along with a registry of biologic reagents that are known to work in the chimpanzee. The Resource and Management Core is responsible for providing animal resources, tissues/biological fluids, cell lines, expert advice and research support to NIH extramural and intramural programs, other federal agencies and private sponsors. The Resource-Related Research Core conducts research to improve the health of the animals maintained, with special emphasis on studies that will enhance the usefulness of the chimpanzee as a model for studies of human disease. Resource-related research will focus on characterization of the immune system of the chimpanzee, expansion of our understanding of chimpanzee cardiomyopathy as a potential human disease model and comparisons of the physiologic and immunological consequences of research manipulations on chimpanzees trained to voluntarily cooperate with research procedures. By expanding the resources available, conducting resource-related research and containing costs, the CBRR will continue to provide a critically important, highly specialized research resource to address important human health issues.

Proper citation: Chimpanzee Biomedical Research Resource (RRID:SCR_006289) Copy   


  • RRID:SCR_002388

    This resource has 100+ mentions.

http://www.genenetwork.org/

Web platform that provides access to data and tools to study complex networks of genes, molecules, and higher order gene function and phenotypes. Sequence data (SNPs) and transcriptome data sets (expression genetic or eQTL data sets). Quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. Used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Users are welcome to enter their own private data.

Proper citation: GeneNetwork (RRID:SCR_002388) Copy   


  • RRID:SCR_002767

    This resource has 1+ mentions.

http://www.macaque.org/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on June 8, 2020.Macaque genomic and proteomic resources and how they are providing important new dimensions to research using macaque models of infectious disease. The research encompasses a number of viruses that pose global threats to human health, including influenza, HIV, and SARS-associated coronavirus. By combining macaque infection models with gene expression and protein abundance profiling, they are uncovering exciting new insights into the multitude of molecular and cellular events that occur in response to virus infection. A better understanding of these events may provide the basis for innovative antiviral therapies and improvements to vaccine development strategies.

Proper citation: Macaque.org (RRID:SCR_002767) Copy   


http://loni.usc.edu/Software/

Portal provides list of software resources. LONI is leader in development of advanced computational algorithms and software for comprehensive and quantitative mapping of brain structure and function. Aims to encourage communication between users and LONI software engineers in order to improve effectiveness.

Proper citation: University of Southern California LONI Software (RRID:SCR_002802) Copy   


  • RRID:SCR_002698

http://www.loni.usc.edu/Software/FFT

Java library used for the execution of discrete Fourier transforms in 1-D, 2-D and 3-D through the implementation of Fast Fourier Transform (FFT) algorithms. * The FFT library has been written in Java for portability across different platforms, integrated into a single jar file for easy implementation. * The FFT library provides forward and backward fast Fourier transforms in 1-D, 2-D and 3-D with an easy-to-use manner. * The FFT requires the length equal to a number with an integer power of two. This library automatically examines the input data and detects the length to prevent improper execution.

Proper citation: FFT Library (RRID:SCR_002698) Copy   


  • RRID:SCR_002695

http://www.LONI.usc.edu/Software/ShapeViewer

Java-based geometry viewer that supports file formats used by Center for Computational Biology (CCB) researchers and provides necessary viewing functions. ShapeViewer uses ShapeTools library support to read and display LONI Ucf, VTX XML, FreeSurfer, Minc Obj (both binary and ascii), Open Dx, Gifti, and OFF format data files.

Proper citation: LONI ShapeViewer (RRID:SCR_002695) Copy   


http://www.loni.usc.edu/Software/SHIVA

A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.

Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy   


  • RRID:SCR_002850

    This resource has 50+ mentions.

http://www.ambystoma.org/

Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.

Proper citation: Sal-Site (RRID:SCR_002850) Copy   


  • RRID:SCR_007105

    This resource has 1000+ mentions.

http://weizhong-lab.ucsd.edu/cd-hit/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software program for clustering biological sequences with many applications in various fields such as making non-redundant databases, finding duplicates, identifying protein families, filtering sequence errors and improving sequence assembly etc. It is very fast and can handle extremely large databases. CD-HIT helps to significantly reduce the computational and manual efforts in many sequence analysis tasks and aids in understanding the data structure and correct the bias within a dataset. The CD-HIT package has CD-HIT, CD-HIT-2D, CD-HIT-EST, CD-HIT-EST-2D, CD-HIT-454, CD-HIT-PARA, PSI-CD-HIT, CD-HIT-OTU and over a dozen scripts. * CD-HIT (CD-HIT-EST) clusters similar proteins (DNAs) into clusters that meet a user-defined similarity threshold. * CD-HIT-2D (CD-HIT-EST-2D) compares 2 datasets and identifies the sequences in db2 that are similar to db1 above a threshold. * CD-HIT-454 identifies natural and artificial duplicates from pyrosequencing reads. * CD-HIT-OTU cluster rRNA tags into OTUs The usage of other programs and scripts can be found in CD-HIT user''s guide. CD-HIT was originally developed by Dr. Weizhong Li at Dr. Adam Godzik''s Lab at the Burnham Institute (now Sanford-Burnham Medical Research Institute)., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: CD-HIT (RRID:SCR_007105) Copy   


  • RRID:SCR_007104

http://ncmir.ucsd.edu/downloads/combine_rts2000.shtm

Software program that performs the auto-alignment and the composition of images to create the mosaic.

Proper citation: Combine RTS2000 (RRID:SCR_007104) Copy   


  • RRID:SCR_003142

    This resource has 10+ mentions.

http://braininfo.rprc.washington.edu

Portal to neuroanatomical information on the Web that helps you identify structures in the brain and provides a variety of information about each structure by porting you to the best of 1500 web pages at 100 other neuroscience sites. BrainInfo consists of three basic components: NeuroNames, a developing database of definitions of neuroanatomic structures in four species, their most common acronyms and their names in eight languages; NeuroMaps, a digital atlas system based on 3-D canonical stereotaxic atlases of rhesus macaque and mouse brains and programs that enable one to map data to standard surface and cross-sectional views of the brains for presentation and publication; and the NeuroMaps precursor: Template Atlas of the Primate Brain, a 2-D stereotaxic atlas of the longtailed (fascicularis) macaque brain that shows the locations of some 250 architectonic areas of macaque cortex. The NeuroMaps atlases will soon include a number of overlays showing the locations of cortical areas and other neuroscientific data in the standard frameworks of the macaque and mouse atlases. Viewers are encouraged to use NeuroNames as a stable source of unique standard terms and acronyms for brain structures in publications, illustrations and indexing systems; to use templates extracted from the NeuroMaps macaque and mouse brain atlases for presenting neuroscientific information in image format; and to use the Template Atlas for warping to MRIs or PET scans of the macaque brain to estimate the stereotaxic locations of structures.

Proper citation: BrainInfo (RRID:SCR_003142) Copy   


http://www.socr.ucla.edu/

A hierarchy of portable online interactive aids for motivating, modernizing probability and statistics applications. The tools and resources include a repository of interactive applets, computational and graphing tools, instructional and course materials. The core SOCR educational and computational components include the following suite of web-based Java applets: * Distributions (interactive graphs and calculators) * Experiments (virtual computer-generated games and processes) * Analyses (collection of common web-accessible tools for statistical data analysis) * Games (interfaces and simulations to real-life processes) * Modeler (tools for distribution, polynomial and spectral model-fitting and simulation) * Graphs, Plots and Charts (comprehensive web-based tools for exploratory data analysis), * Additional Tools (other statistical tools and resources) * SOCR Java-based Statistical Computing Libraries * SOCR Wiki (collaborative Wiki resource) * Educational Materials and Hands-on Activities (varieties of SOCR educational materials), * SOCR Statistical Consulting In addition, SOCR provides a suite of tools for volume-based statistical mapping (http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_AnalysesCommandLine) via command-line execution and via the LONI Pipeline workflows (http://www.nitrc.org/projects/pipeline). Course instructors and teachers will find the SOCR class notes and interactive tools useful for student motivation, concept demonstrations and for enhancing their technology based pedagogical approaches to any study of variation and uncertainty. Students and trainees may find the SOCR class notes, analyses, computational and graphing tools extremely useful in their learning/practicing pursuits. Model developers, software programmers and other engineering, biomedical and applied researchers may find the light-weight plug-in oriented SOCR computational libraries and infrastructure useful in their algorithm designs and research efforts. The three types of SOCR resources are: * Interactive Java applets: these include a number of different applets, simulations, demonstrations, virtual experiments, tools for data visualization and analysis, etc. All applets require a Java-enabled browser (if you see a blank screen, see the SOCR Feedback to find out how to configure your browser). * Instructional Resources: these include data, electronic textbooks, tutorials, etc. * Learning Activities: these include various interactive hands-on activities. * SOCR Video Tutorials (including general and tool-specific screencasts).

Proper citation: Statistics Online Computational Resource (RRID:SCR_003378) Copy   


http://www.loni.usc.edu/BIRN/Projects/Mouse/

Animal model data primarily focused on mice including high resolution MRI, light and electron microscopic data from normal and genetically modified mice. It also has atlases, and the Mouse BIRN Atlasing Toolkit (MBAT) which provides a 3D visual interface to spatially registered distributed brain data acquired across scales. The goal of the Mouse BIRN is to help scientists utilize model organism databases for analyzing experimental data. Mouse BIRN has ended. The next phase of this project is the Mouse Connectome Project (https://www.nitrc.org/projects/mcp/). The Mouse BIRN testbeds initially focused on mouse models of neurodegenerative diseases. Mouse BIRN testbed partners provide multi-modal, multi-scale reference image data of the mouse brain as well as genetic and genomic information linking genotype and brain phenotype. Researchers across six groups are pooling and analyzing multi-scale structural and functional data and integrating it with genomic and gene expression data acquired from the mouse brain. These correlated multi-scale analyses of data are providing a comprehensive basis upon which to interpret signals from the whole brain relative to the tissue and cellular alterations characteristic of the modeled disorder. BIRN's infrastructure is providing the collaborative tools to enable researchers with unique expertise and knowledge of the mouse an opportunity to work together on research relevant to pre-clinical mouse models of neurological disease. The Mouse BIRN also maintains a collaborative Web Wiki, which contains announcements, an FAQ, and much more.

Proper citation: Mouse Biomedical Informatics Research Network (RRID:SCR_003392) Copy   


  • RRID:SCR_003424

    This resource has 1+ mentions.

http://portal.ncibi.org/gateway/mimiplugin.html

The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.

Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy   


http://caties.cabig.upmc.edu/

The Cancer Text Information Extraction System (caTIES) provides tools for de-identification and automated coding of free-text structured pathology reports. It also has a client that can be used to search these coded reports. The client also supports Tissue Banking and Honest Broker operations. caTIES focuses on two important challenges of bioinformatics * Information extraction (IE) from free text * Access to tissue. Regarding the first challenge, information from free-text pathology documents represents a vital and often underutilized source of data for cancer researchers. Typically, extracting useful data from these documents is a slow and laborious manual process requiring significant domain expertise. Application of automated methods for IE provides a method for radically increasing the speed and scope with which this data can be accessed. Regarding the second challenge, there is a pressing need in the cancer research community to gain access to tissue specific to certain experimental criteria. Presently, there are vast quantities of frozen tissue and paraffin embedded tissue throughout the country, due to lack of annotation or lack of access to annotation these tissues are often unavailable to individual researchers. caTIES has three goals designed to solve these problems: * Extract coded information from free text Surgical Pathology Reports (SPRs), using controlled terminologies to populate caBIG-compliant data structures. * Provide researchers with the ability to query, browse and create orders for annotated tissue data and physical material across a network of federated sources. With caTIES the SPR acts as a locator to tissue resources. * Pioneer research for distributed text information extraction within the context of caBIG. caTIES focuses on IE from SPRs because they represent a high-dividend target for automated analysis. There are millions of SPRs in each major hospital system, and SPRs contain important information for researchers. SPRs act as tissue locators by indicating the presence of tissue blocks, frozen tissue and other resources, and by identifying the relationship of the tissue block to significant landmarks such as tumor margins. At present, nearly all important data within SPRs are embedded within loosely-structured free-text. For these reasons, SPRs were chosen to be coded through caTIES because facilitating access to information contained in SPRs will have a powerful impact on cancer research. Once SPR information has been run through the caTIES Pipeline, the data may be queried and inspected by the researcher. The goal of this search may be to extract and analyze data or to acquire slides of tissue for further study. caTIES provides two query interfaces, a simple query dashboard and an advanced diagram query builder. Both of these interfaces are capable of NCI Metathesaurus, concept-based searching as well as string searching. Additionally, the diagram interface is capable of advanced searching functionalities. An important aspect of the interface is the ability to manage queries and case sets. Users are able to vet query results and save them to case sets which can then be edited at a later time. These can be submitted as tissue orders or used to derive data extracts. Queries can also be saved, and modified at a later time. caTIES provides the following web services by default: MMTx Service, TIES Coder Service

Proper citation: caTIES - Cancer Text Information Extraction System (RRID:SCR_003444) Copy   


  • RRID:SCR_003732

    This resource has 50+ mentions.

http://www.isi.edu/integration/karma/

An information integration software tool that enables users to integrate data from a variety of data sources including databases, spreadsheets, delimited text files, XML, JSON, KML and Web APIs. Users integrate information by modeling it according to an ontology of their choice using a graphical user interface that automates much of the process. Karma learns to recognize the mapping of data to ontology classes and then uses the ontology to propose a model that ties together these classes. Users then interact with the system to adjust the automatically generated model. During this process, users can transform the data as needed to normalize data expressed in different formats and to restructure it. Once the model is complete, users can publish the integrated data as RDF or store it in a database.

Proper citation: Karma (RRID:SCR_003732) Copy   


  • RRID:SCR_008733

http://www.ctspedia.org/do/view/CTSpedia

CTSpedia is a national effort to collect wisdom, tools, educational materials, and other items useful for clinical and translational researchers and to provide timely and useful advice to clinical and translational researchers with specific problems. The CTSpedia is a collaborative vehicle for the CTSA''s Biostatistics/Epidemiology/Research/Design (BERD) Online Resources and Education taskforce to identify and share resources across the national consortium and community researchers world-wide. With the support of the national BERD consortia, the project obtained funding and support from the National Center for Research Resources (NCRR) to expand the original scope and content of CTSpedia and foster collaboration amongst CTSAs. The main goal of CTSpedia.org is to create a definable academic home on the internet for the discipline of clinical and translational sciences across the country and the world. * While the CTSA consortium serves the onsite physical level of the institutions involved, CTSpedia.org seeks to fill the gaps where the network is lacking, and to augment that network as the central hub for the peer to peer sharing of knowledge and resources. * While the CTSA national scope comes to fruition, the international scope of the consortia is more readily facilitated with an online resource like CTSpedia. * Utilizing the collaborative nature of the wiki-style website, CTSpedia.org allows for researchers anywhere in the world to ask questions and receive answers and related information in a timely and efficient manner, overcoming the logistical issues of distance and scheduling. * The streamlined availability of an online resource and knowledge repository will aid in addressing common issues that arise in clinical research, which will filter out consultation requests for minor questions, allowing for CTSA consultants to address more prevalent consultations.

Proper citation: CTSpedia (RRID:SCR_008733) Copy   


http://meme.nbcr.net/meme/cgi-bin/gomo.cgi

Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X