Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 out of 240 results
Snippet view Table view Download 240 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002698

http://www.loni.usc.edu/Software/FFT

Java library used for the execution of discrete Fourier transforms in 1-D, 2-D and 3-D through the implementation of Fast Fourier Transform (FFT) algorithms. * The FFT library has been written in Java for portability across different platforms, integrated into a single jar file for easy implementation. * The FFT library provides forward and backward fast Fourier transforms in 1-D, 2-D and 3-D with an easy-to-use manner. * The FFT requires the length equal to a number with an integer power of two. This library automatically examines the input data and detects the length to prevent improper execution.

Proper citation: FFT Library (RRID:SCR_002698) Copy   


  • RRID:SCR_002695

http://www.LONI.usc.edu/Software/ShapeViewer

Java-based geometry viewer that supports file formats used by Center for Computational Biology (CCB) researchers and provides necessary viewing functions. ShapeViewer uses ShapeTools library support to read and display LONI Ucf, VTX XML, FreeSurfer, Minc Obj (both binary and ascii), Open Dx, Gifti, and OFF format data files.

Proper citation: LONI ShapeViewer (RRID:SCR_002695) Copy   


http://www.loni.usc.edu/Software/SHIVA

A Java-based visualization and analysis application that can process 2D and 3D image files and provides convenient methods for users to overlay multiple datasets. * Simultaneous visualization of multiple image volumes. * Tools for labeling and masking of structures. * Framework for the Mouse Atlas Project.

Proper citation: Synchronized Histological Image Viewing Architecture (RRID:SCR_002690) Copy   


  • RRID:SCR_002850

    This resource has 50+ mentions.

http://www.ambystoma.org/

Portal that supports Ambystoma-related research and educational efforts. It is composed of several resources: Salamander Genome Project, Ambystoma EST Database, Ambystoma Gene Collection, Ambystoma Map and Marker Collection, Ambystoma Genetic Stock Center, and Ambystoma Research Coordination Network.

Proper citation: Sal-Site (RRID:SCR_002850) Copy   


  • RRID:SCR_025779

    This resource has 1+ mentions.

https://github.com/ccipd/MRQy

Software quality assurance and checking tool for quantitative assessment of magnetic resonance imaging and computed tomography data. Used for quality control of MR imaging data.

Proper citation: MRQy (RRID:SCR_025779) Copy   


http://www.statepi.jhsph.edu/ckid/

Prospective, observational cohort study of children with mild to moderate chronic kidney disease (CKD) to: (1) determine risk factors for progression of pediatric chronic kidney disease (CKD); (2) examine the impact of CKD on neurocognitive development; (3) examine the impact of CKD on risk factors for cardiovascular disease, and; (4) examine the impact of CKD on growth. The CKiD study population will include a cohort of 540 children, age 1 16 years, expected to be enrolled over a 24-month period.

Proper citation: CKID A Prospective Cohort Study of Kidney Disease in Children (RRID:SCR_001500) Copy   


  • RRID:SCR_001398

    This resource has 100+ mentions.

https://www.mristudio.org/

An image processing program running under Windows suitable for such tasks as tensor calculation, color mapping, fiber tracking, and 3D visualization. Most of operations can be done with only a few clicks. This tool evolved from DTI Studio. Tools in the program can be grouped in the following way: * Image Viewer * Diffusion Tensor Calculations * Fiber Tracking and Editing * 3D Visualization * Image File Management * Region of Interesting (ROI) Drawing and Statistics * Image Registration

Proper citation: MRI Studio (RRID:SCR_001398) Copy   


  • RRID:SCR_001391

    This resource has 1+ mentions.

http://bmsr.usc.edu/software/pneuma/

A set of modules that are used to simulate the autoregulation of the cardiovascular and respiratory systems under conditions of changing sleep-wake state and a variety of physiological and pharmacological interventions. It models the dynamic interactions that take place among the various component mechanisms, including those involved in the chemical control of breathing, heart rate, and blood pressure, as well as the effects of changes in the sleep-wake state and arousal from sleep. PNEUMA includes the autonomic control of the cardiovascular system, chemoreflex and state-related control of breath-to-breath ventilation, state-related and chemoreflex control of upper airway potency, as well as respiratory and circulatory mechanics. The model is capable of simulating the cardiorespiratory responses to sleep onset, arousal, continuous positive airway pressure, the administration of inhaled carbon dioxide and oxygen, Valsalva and Mueller maneuvers, and Cheyne-Stokes respiration during sleep. In PNEUMA 3.0, we have extended the existing integrative model of respiratory, cardiovascular, and sleepwake state control, to incorporate a sub-model of glucoseinsulinfatty acid regulation. The extended model is capable of simulating the metabolic control of glucoseinsulin dynamics and its interactions with the autonomic nervous system. The interactions between autonomic and metabolic control include the circadian regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in glucose and free fatty acids in plasma, metabolic coupling among tissues and organs mediated by insulin and epinephrine, as well as the effect of insulin on peripheral vascular sympathetic activity. This extended model represents a starting point from which further in silico investigations into the interaction between the autonomic nervous system and the metabolic control system can proceed. Features in PNEUMA 3.0 * Incorporates metabolic component based on prior models of glucose-insulin regulation and free fatty acid (FFA) regulation. * Changes in sympathetic activity from the autonomic portion of PNEUMA produce changes in epinephrine output, which in turn affects the metabolic sub-model. * Inputs from the dietary intake of glucose and external interventions, such as insulin injections, have also been incorporated. * Also incorporated is autonomic feedback from the metabolic component to the rest of PNEUMA: changes in insulin level lead to changes in sympathetic tone. System Requirements: PNEUMA requires Matlab R2007b or higher with the accompanying version of Simulink to be installed on your computer.

Proper citation: PNEUMA (RRID:SCR_001391) Copy   


  • RRID:SCR_001847

    This resource has 10000+ mentions.

http://surfer.nmr.mgh.harvard.edu/

Open source software suite for processing and analyzing human brain MRI images. Used for reconstruction of brain cortical surface from structural MRI data, and overlay of functional MRI data onto reconstructed surface. Contains automatic structural imaging stream for processing cross sectional and longitudinal data. Provides anatomical analysis tools, including: representation of cortical surface between white and gray matter, representation of the pial surface, segmentation of white matter from rest of brain, skull stripping, B1 bias field correction, nonlinear registration of cortical surface of individual with stereotaxic atlas, labeling of regions of cortical surface, statistical analysis of group morphometry differences, and labeling of subcortical brain structures.Operating System: Linux, macOS.

Proper citation: FreeSurfer (RRID:SCR_001847) Copy   


  • RRID:SCR_001808

    This resource has 10+ mentions.

http://www.nesys.uio.no/Atlas3D/

A multi-platform visualization tool which allows import and visualization of 3-D atlas structures in combination with tomographic and histological image data. The tool allows visualization and analysis of the reconstructed atlas framework, surface modeling and rotation of selected structures, user-defined slicing at any chosen angle, and import of data produced by the user for merging with the atlas framework. Tomographic image data in NIfTI (Neuroimaging Informatics Technology Initiative) file format, VRML and PNG files can be imported and visualized within the atlas framework. XYZ coordinate lists are also supported. Atlases that are available with the tool include mouse brain structures (3-D reconstructed from The Mouse Brain in Stereotaxic Coordinates by Paxinos and Franklin (2001)) and rat brain structures (3-D reconstructed from The Rat Brain in Stereotaxic Coordinates by Paxinos and Watson (2005)). Experimental data can be imported in Atlas3D and warped to atlas space, using manual linear registration, with the possibility to scale, rotate, and position the imported data. This facilitates assignment of location and comparative analysis of signal location in tomographic images.

Proper citation: Atlas3D (RRID:SCR_001808) Copy   


http://meme-suite.org/

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy   


  • RRID:SCR_008733

http://www.ctspedia.org/do/view/CTSpedia

CTSpedia is a national effort to collect wisdom, tools, educational materials, and other items useful for clinical and translational researchers and to provide timely and useful advice to clinical and translational researchers with specific problems. The CTSpedia is a collaborative vehicle for the CTSA''s Biostatistics/Epidemiology/Research/Design (BERD) Online Resources and Education taskforce to identify and share resources across the national consortium and community researchers world-wide. With the support of the national BERD consortia, the project obtained funding and support from the National Center for Research Resources (NCRR) to expand the original scope and content of CTSpedia and foster collaboration amongst CTSAs. The main goal of CTSpedia.org is to create a definable academic home on the internet for the discipline of clinical and translational sciences across the country and the world. * While the CTSA consortium serves the onsite physical level of the institutions involved, CTSpedia.org seeks to fill the gaps where the network is lacking, and to augment that network as the central hub for the peer to peer sharing of knowledge and resources. * While the CTSA national scope comes to fruition, the international scope of the consortia is more readily facilitated with an online resource like CTSpedia. * Utilizing the collaborative nature of the wiki-style website, CTSpedia.org allows for researchers anywhere in the world to ask questions and receive answers and related information in a timely and efficient manner, overcoming the logistical issues of distance and scheduling. * The streamlined availability of an online resource and knowledge repository will aid in addressing common issues that arise in clinical research, which will filter out consultation requests for minor questions, allowing for CTSA consultants to address more prevalent consultations.

Proper citation: CTSpedia (RRID:SCR_008733) Copy   


http://meme.nbcr.net/meme/cgi-bin/gomo.cgi

Gene Ontology for Motifs (GOMO) is an alignment- and threshold-free comparative genomics approach for assigning functional roles to DNA regulatory motifs from DNA sequence. The algorithm detects associations between a user-specified DNA regulatory motif (expressed as a position weight matrix; PWM) and Gene Ontology terms. The original method for predicting the roles of transcription factors (TFs starts with a PWM motif describing the DNA-binding affinity of the TF. GOMO uses the PWM to score the promoter region of each gene in the genome for its likelihood to be bound by the TF. The resulting ''''affinity'''' scores are then used to test each term in the Gene Ontology for association with high-scoring genes. The algorithm was subsequently extended to leverage conserved signals using multiple, related species in a comparative approach, which greatly improves the resulting annotations. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GOMO - Gene Ontology for Motifs (RRID:SCR_008864) Copy   


  • RRID:SCR_009626

    This resource has 10+ mentions.

http://itools.loni.usc.edu/

An infrastructure for managing of diverse computational biology resources - data, software tools and web-services. The iTools design, implementation and meta-data content reflect the broad NCBC needs and expertise (www.NCBCs.org).

Proper citation: iTools (RRID:SCR_009626) Copy   


  • RRID:SCR_010668

    This resource has 50+ mentions.

http://uberon.org

An integrated cross-species anatomy ontology representing a variety of entities classified according to traditional anatomical criteria such as structure, function and developmental lineage. The ontology includes comprehensive relationships to taxon-specific anatomical ontologies, allowing integration of functional, phenotype and expression data. Uberon consists of over 10000 classes (March 2014) representing structures that are shared across a variety of metazoans. The majority of these classes are chordate specific, and there is large bias towards model organisms and human.

Proper citation: UBERON (RRID:SCR_010668) Copy   


  • RRID:SCR_009586

    This resource has 100+ mentions.

http://www.nmr.mgh.harvard.edu/DOT/resources/homer2/home.htm

Software matlab scripts used for analyzing fNIRS data to obtain estimates and maps of brain activation. Graphical user interface (GUI) for visualization and analysis of functional near-infrared spectroscopy (fNIRS) data.

Proper citation: Homer2 (RRID:SCR_009586) Copy   


http://www.loni.usc.edu/Software/IO_Plugins

Decoders and encoders written in Java for the AFNI, ANALYZE, DICOM, ECAT, GE, MINC, NIFTI and other neuroimaging file formats.The plugins use Java Image I/O interfaces to read and write metadata and image data and can read and write AFNI, ANALYZE 7.5, DICOM, ECAT 7.2, GE 5.0, INTERFILE (including hrrt), MINC, NIFTI, and UCLA PACS file formats. All source code is provided and usage examples are included.

Proper citation: LONI Java Image I/O Plugins (RRID:SCR_008277) Copy   


  • RRID:SCR_013152

    This resource has 10+ mentions.

http://surfer.nmr.mgh.harvard.edu/fswiki/Tracula

Software tool developed for automatically reconstructing a set of major white matter pathways in the brain from diffusion weighted images using probabilistic tractography. This method utilizes prior information on the anatomy of the pathways from a set of training subjects. By incorporating this prior knowledge in the reconstruction procedure, our method obviates the need for manual intervention with the tract solutions at a later stage and thus facilitates the application of tractography to large studies. The trac-all script is used to preprocess raw diffusion data (correcting for eddy current distortion and B0 field inhomogenities), register them to common spaces, model and reconstruct major white matter pathways (included in the atlas) without any manual intervention. trac-all may be used to execute all the above steps or parts of it depending on the dataset and user''''s preference for analyzing diffusion data. Alternatively, scripts exist to execute chunks of each processing pipeline, and individual commands may be run to execute a single processing step. To explore all the options in running trac-all please refer to the trac-all wiki. In order to use this script to reconstruct tracts in Diffusion images, all the subjects in the dataset must have Freesurfer Recons.

Proper citation: TRACULA (RRID:SCR_013152) Copy   


  • RRID:SCR_014185

    This resource has 1+ mentions.

http://www.nitrc.org/projects/caworks

A software application developed to support computational anatomy and shape analysis. The capabilities of CAWorks include: interactive landmark placement to create segmentation (mask) of desired region of interest; specialized landmark placement plugins for subcortical structures such as hippocampus and amygdala; support for multiple Medical Imaging data formats, such as Nifti, Analyze, Freesurfer, DICOM and landmark data; Quadra Planar view visualization; and shape analysis plugin modules, such as Large Deformation Diffeomorphic Metric Mapping (LDDMM). Specific plugins are available for landmark placement of the hippocampus, amygdala and entorhinal cortex regions, as well as a browser plugin module for the Extensible Neuroimaging Archive Toolkit.

Proper citation: CAWorks (RRID:SCR_014185) Copy   


  • RRID:SCR_016674

https://omictools.com/tiltpicker-tool

Software tool to facilitate particle selection in single particle electron microscopy. An interactive graphical interface application designed to streamline the selection of particle pairs from tilted-pair datasets. Designed to work with existing software tools for image processing.

Proper citation: TiltPicker (RRID:SCR_016674) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X