Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
A multi-center and multi-disciplinary study designed to dramatically increase understanding of chronic traumatic encephalopathy (CTE) and other late effects of traumatic brain injury (TBI). Overlapping clinical features, postmortem pathologies and patterns of involvement exist in TBI, CTE, and Alzheimer''s disease pose challenges to accurate diagnosis. Premortem diagnosis of CTE is currently impossible. The neuropathological consequences of single mild or moderate-severe TBI and its relationship with CTE and known dementias are unclear. The proposed project will leverage extensive resources from an ongoing population-based prospective cohort study of brain aging (Adult Changes in Thought; ACT, n=2,305) which includes excellent medical, behavioral, and genetic characterization of a cohort (20% of whom have a history of mild-moderate TBI) in addition to state-of-the-art neuropathology workup upon death. Neuropathological study of TBI effects can begin immediately in the existing ACT autopsy sample (n=489, 20% with TBI exposure). Additional cohorts of TBI- exposed individuals will come from the Brain Injury Research Center at Mount Sinai (n=150 individuals with moderate-severe TBI), the University of Texas Southwestern (n=50 retired boxers with repetitive TBI exposure), and the National Football League (n=76 retired players with repetitive TBI exposure). All participants in the proposed study (ACT and other sites) will undergo uniform harmonized neurobehavioral assessment (chosen to maximize correspondence with existing large-scale TBI and dementia studies), MRI scan, and genomic analysis. Those individuals who expire during the course of the study will undergo ex-vivo neuroimaging and extensive neuropathological exam using state-of-the-art techniques (such as Histelide) designed to quantify tau and A�� in whole brain specimens. Only by examining postmortem pathology in a sample of individuals with varying levels of TBI exposure who are well characterized during life (as proposed herein) can postmortem pathology facilitate identification of in-vivo biomarkers that can act as diagnostic tools. This project represents the most systematic and scientifically rigorous effort to date to develop a more complete understanding of the long-term clinical and neuropathological sequelae of single and multiple TBI.
Proper citation: Neuropathology of CTE and Delayed Effects of TBI: Toward In-Vivo Diagnostics (RRID:SCR_012951) Copy
Strategy guide for HED Annotation. Framework for systematically describing laboratory and real world events.HED tags are comma separated path strings. Organized in forest of groups with roots Event, Item, Sensory presentation, Attribute, Action, Participant, Experiment context, and Paradigm. Used for preparing brain imaging data for automated analysis and meta analysis. Applied to brain imaging EEG, MEG, fNIRS, multimodal mobile brain or body imaging, ECG, EMG, GSR, or behavioral data. Part of Brain Imaging Data Structure standard for brain imaging.
Proper citation: HED Tags (RRID:SCR_014074) Copy
A community encyclopaedia that links brain research concepts with data, models and literature from around the world. It is an open project where users can participate and contribute to the global research community.
Proper citation: KnowledgeSpace (RRID:SCR_014539) Copy
http://www.sci.utah.edu/software/fluorender.html
Interactive rendering tool for confocal microscopy data visualization. Combines rendering of multi-channel volume data and polygon mesh data, where properties of each dataset can be adjusted independently and quickly. Designed for neurobiologists, allowing them to better visualize confocal data from fluorescently-stained brains, but it is also useful for other biological samples. Features include feature tracking, 3D measurement tools, multiple render modes for multi-channel confocal data, and volume paint selection and segmentation.
Proper citation: FluoRender (RRID:SCR_014303) Copy
http://www.nitrc.org/projects/multixplore/
Graphical user interface that has been implemented as a 3D Slicer plugin (scripted module). It serves to display a corresponding set of cortical regions from functional connectivity matrix in an explorable 3D scene that represents brain anatomical environment. In addition to grey matter regions, MultiXplore automatically finds and extracts deterministic fiber bundles which exist between selected region(s) and adds them to the 3D environment. This feature helps in generating region-based fiber bundles given a desired whole-brain tractography data.
Proper citation: MultiXplore (RRID:SCR_014814) Copy
https://www.nitrc.org/projects/atpp
Integrated pipeline for tractography-based brain parcellation with automatic processing and massive parallel computing. ATPP offers a CLI version for parcellating multiple brain regions and a GUI version for parcellating a specific brain region. " ATPP completely follows the scientific cultural shift to open science, which aims at making scientific research including journal papers, lab notes, data, and, of course, workflow tools, accessible and transparent to all levels of society. ATPP is publicly accessible in Neuroimaging Informatics Tools and Resources Clearinghouse8 (NITRC) (https://www.nitrc.org/projects/atpp). Its source codes are hosted in GitHub9 (https://github.com/haililihai/ATPP_CLI; https://github.com/haililihai/ATPP_GUI), under the GNU generic purpose license version 310 (GPLv3), and are welcome to download and fork. The Digital Object Identifiers (DOIs) providing a persistent way to make digital data easily and uniquely citable was created from Zenodo11 platform with those GitHub repositories (ATPP CLI v2.0.0, doi: https://doi.org/10.5281/zenodo.239702; ATPP GUI v2.0.0, doi: https://doi.org/10.5281/zenodo.239705). "
Proper citation: Automatic Tractography-based Parcellation Pipeline (RRID:SCR_014815) Copy
An online tool for managing and viewing datasets. Data can be viewed in 2D or 3D with activation points as points clouds or projections on the cortex surface. Data can be imported as a NIfTI file or a list of activation peaks and results can be exported as a PDF file.
Proper citation: linkRbrain (RRID:SCR_014562) Copy
http://brainmap.org/software.html#GingerALE
Software available from brainmap.org to perform meta-analyses via the activation likelihood estimation (ALE) method. It also includes the transforms for icbm2tal conversions.
Proper citation: GingerALE (RRID:SCR_014921) Copy
Brain connectivity atlas to create systematic, digital repository for data on connections between different cortical areas, in primate species. Data repository for connections between different cortical areas in marmoset monkeys. Allows access to data set and enables other interpretations of data, in light of future evolution of knowledge about marmoset cortex.
Proper citation: Marmoset Brain Connectivity Atlas (RRID:SCR_015964) Copy
Data set of images of the human nervous system focusing on neuroanatomy.
Proper citation: Human Nervous System Neuroanatomy (RRID:SCR_006371) Copy
http://vinovia.ncl.ac.uk/emagewebapp/pages/eadhb_home.jsf
Database of a set of standard 3D virtual models at different stages of development from Carnegie Stages (CS) 12-23 (approximately 26-56 days post conception) in which various anatomical regions have been defined with a set of anatomical terms at various stages of development (known as an ontology). Experimental data is captured and converted to digital format and then mapped to the appropriate 3D model. The ontology is used to define sites of gene expression using a set of standard descriptions and to link the expression data to an ''''anatomical tree''''. Human data from stages CS12 to CS23 can be submitted to the HUDSEN Gene Expression Database. The anatomy ontology currently being used is based on the Edinburgh Human Developmental Anatomy Database which encompasses all developing structures from CS1 to CS20 but is not detailed for developing brain structures. The ontology is being extended and refined (by Prof Luis Puelles, University of Murcia, Spain) and will be incorporated into the HUDSEN database as it is developed. Expression data is annotated using two methods to denote sites of expression in the embryo: spatial annotation and text annotation. Additionally, many aspects of the detection reagent and specimen are also annotated during this process (assignment of IDs, nucleotide sequences for probes etc). There are currently two main ways to search HUDSEN - using a gene/protein name or a named anatomical structure as the query term. The entire contents of the database can be browsed using the data browser. Results may be saved. The data in HUDSEN is generated from both from researchers within the HUDSEN project, and from the wider scientific community. The HUDSEN human gene expression spatial database is a collaboration between the Institute of Human Genetics in Newcastle, UK, and the MRC Human Genetics Unit in Edinburgh, UK, and was developed as part of the Electronic Atlas of the Developing Human Brain (EADHB) project (funded by the NIH Human Brain Project). The database is based on the Edinburgh Mouse Atlas gene expression database (EMAGE), and is designed to be an openly available resource to the research community holding gene expression patterns during early human development.
Proper citation: HUDSEN Human Gene Expression Spatial Database (RRID:SCR_006325) Copy
http://learn.genetics.utah.edu/content/addiction/drugs/mouse.html
Mouse Party is an interactive website that teaches how various drugs disrupt the synapse by taking a look inside the brains of mice on drugs! Every drug of abuse has its own unique molecular mechanism. Where applicable, this presentation primarily depicts how drugs interact with dopamine neurotransmitters because this website focuses on the brain''s reward pathway. Mouse Party is designed to provide a small glimpse into the chemical interactions at the synaptic level that cause the drug user to feel ''high''. The simplified mechanisms of drug action presented here are just a small part of the story. When drugs enter the body they elicit very complex effects in many different regions of the brain. Often they interact with many different types of neurotransmitters and may bind with a variety of receptor types in a variety of different locations. For example, THC in marijuana can bind with cannabinoid receptors located on the presynaptic and/or postsynaptic cell in a synapse.
Proper citation: Mouse Party (RRID:SCR_006438) Copy
https://sites.google.com/site/functionalconnectivitytoolbox/
MATLAB toolbox for performing functional connectivity analyses includes many of the most commonly-used approaches researchers have utilized to date for the identification of condition-dependent functional interactions between fMRI time-series obtained from two or more brain regions. The approaches are either bivariate or multivariate methods defined in time or frequency domains that emphasize distinct features of relationships among the time-series.
Proper citation: Functional Connectivity Toolbox (RRID:SCR_006394) Copy
http://users.loni.ucla.edu/~shattuck/brainsuite/
Suite of image analysis tools designed to process magnetic resonance images (MRI) of the human head. BrainSuite provides an automatic sequence to extract genus-zero cortical surface mesh models from the MRI. It also provides a set of viewing tools for exploring image and surface data. The latest release includes graphical user interface and command line versions of the tools. BrainSuite was specifically designed to guide its users through the process of cortical surface extraction. NITRC has written the software to require minimal user interaction and with the goal of completing the entire process of extracting a topologically spherical cortical surface from a raw MR volume within several minutes on a modern workstation. The individual components of BrainSuite may also be used for soft tissue, skull and scalp segmentation and for surface analysis and visualization. BrainSuite was written in Microsoft Visual C using the Microsoft Foundation Classes for its graphical user interface and the OpenGL library for rendering. BrainSuite runs under the Windows 2000 and Windows XP Professional operating systems. BrainSuite features include: * Sophisticated visualization tools, such as MRI visualization in 3 orthogonal views (either separately or in 3D view), and overlayed surface visualization of cortex, skull, and scalp * Cortical surface extraction, using a multi-stage user friendly approach. * Tools including brain surface extraction, bias field correction, voxel classification, cerebellum removal, and surface generation * Topological correction of cortical surfaces, which uses a graph-based approach to remove topological defects (handles and holes) and ensure a tessellation with spherical topology * Parameterization of generated cortical surfaces, minimizing a harmonic energy functional in the p-norm * Skull and scalp surface extraction
Proper citation: BrainSuite (RRID:SCR_006623) Copy
http://www.medschool.lsuhsc.edu/epilepsy_center/
The LSU Epilepsy Center of Excellence is dedicated to providing state-of-the-art, comprehensive epilepsy treatment, enhancing access to epilepsy education for patients and physicians, and promoting multidisciplinary epilepsy research in pharmacology, neuroelectrophysiology, neuroimaging, neurosurgery, neuropsychology, biomedical engineering and public health. The center''s team of professionals offers diagnostic and presurgical monitoring, the strategic use of antiepileptic medications, specialized epilepsy neuroimaging, vagus nerve stimulator implantation, ketogenic diet management, neuropsychological testing, psychiatric support and epilepsy surgery for adults and children. The Center also hosts several clinical research trials each year for investigational medications and devices. The following are the treatment methods currently available at this center: - Epilepsy Brain Implants - Responsive Neurostimulator (RNS) - Medications - Medication blood level monitoring - Vagus Nerve Stimulators (VNS) - Epilepsy Surgery - Ketogenic Diet - Psychiatric Services - Radiosurgery Epilepsy Center Sections: *Electrophysiology *Neuroimaging *Neuropsychology *Neuroscience *Neurosurgery *Pharmacology *Psychiatry *Research
Proper citation: Louisiana State University School of Medicine, Health Sciences Center: Epilepsy Center (RRID:SCR_006519) Copy
http://www.mitre.org/news/digest/archives/2002/neuroinformatics.html
This resource''s long-term goal is to develop informatics methodologies and tools that will increase the creativity and productivity of neuroscience investigators, as they work together to use shared human brain mapping data to generate and test ideas far beyond those pursued by the data''s originators. This resource currently has four major projects supporting this goal: * Database tools: The goal of the NeuroServ project is to provide neuroscience researchers with automated information management tools that reduce the effort required to manage, analyze, query, view, and share their imaging data. It currently manages both structural magnetic resonance image (MRI) datasets and diffusion tensor image (DTI) datasets. NeuroServ is fully web-enabled: data entry, query, processing, reporting, and administrative functions are performed by qualified users through a web browser. It can be used as a local laboratory repository, to share data on the web, or to support a large distributed consortium. NeuroServ is based on an industrial-quality query middleware engine MRALD. NeuroServ includes a specialized neuroimaging schema and over 40 custom Java Server Pages supporting data entry, query, and reporting to help manage and explore stored images. NeuroServ is written in Java for platform independence; it also utilizes several open source components * Data sharing: DataQuest is a collaborative forum to facilitate the sharing of neuroimaging data within the neuroscience community. By publishing summaries of existing datasets, DataQuest enables researchers to: # Discover what data is available for collaborative research # Advertise your data to other researchers for potential collaborations # Discover which researchers may have the data you need # Discover which researchers are interested in your data. * Image quality: The approach to assessing the inherent quality of an image is to measure how distorted the image is. Using what are referred to as no-reference or blind metrics, one can measure the degree to which an image is distorted. * Content-based image retrieval: NIRV (NeuroImagery Retrieval & Visualization) is a work environment for advanced querying over imagery. NIRV will have a Java-based front-end for users to issue queries, run processing algorithms, review results, visualize imagery and assess image quality. NIRV interacts with an image repository such as NeuroServ. Users can also register images and will soon be able to filter searches based on image quality.
Proper citation: MITRE Neuroinformatics (RRID:SCR_006508) Copy
http://sourceforge.net/projects/blox/
A quantitative medical imaging and visualization program for use on brain MR, DTI, and MRS data. Programming Language: Java, JavaScript, Scheme
Proper citation: Blox (RRID:SCR_006667) Copy
Brain Innovation B.V. is developing scientific software in the field of human and animal brain imaging, neural network simulation and computer-based experimental control. Our current major product, BrainVoyager QX, is a commercially available cross-platform neuroimaging tool, which is used in hundreds of labs across the planet. Turbo-BrainVoyager is an easy to use program for real-time data analysis, which allows to observe a subject''s or patient''s brain activity during an ongoing functional MRI scanning session. TMS Neuronavigator provides the hard- and software to navigate a TMS coil to desired anatomical or functionally defined brain regions. We also provide free software products. BrainVoyager Brain Tutor allows to learn about brain areas by clicking on rotatable 3D brain models. StimulDX is a powerful stimulation software based on Microsofts DirectX API, which we will make available for free download in the near future.
Proper citation: Brain Innovation: Home of the BrainVoyager Product Family (RRID:SCR_006660) Copy
http://www.brainvoyager.com/products/braintutor.html
A free award-winning educational program that teaches you knowledge about the human brain through interactive exploration of rotatable 3D models. The models have been computed with BrainVoyager QX using original data from magnetic resonance imaging (MRI) scans. Besides having fun with the rotatable 3D models, the program contains information about the major lobes, gyri, sulci and Brodmann areas of the cerebral cortex. The program runs on Windows XP, Vista and Windows 7.
Proper citation: BrainVoyager Brain Tutor (RRID:SCR_006737) Copy
http://www.siumed.edu/alz/research%20Dementia.html
A brain autopsy program developed to serve the needs of Illinois families and individuals affected by dementing diseases and to advance dementia research by providing tissue to researchers studying dementing diseases. The SIU School of Medicine (SIU-SM) Dementia Brain Autopsy Program facilitates the postmortem process for families wishing to obtain an autopsy for a loved one. A brain autopsy provides family members with accurate information regarding the exact nature of their relative's dementia. This includes information about the possibility of an inherited disorder which may affect other family members. The brain autopsy also helps clinicians improve their clinical skills by identifying the precise cause of the clinical dementia.
Proper citation: SIU CADRD Dementia Brain Autopsy Program (RRID:SCR_006918) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.