Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.nih.gov/science/amp/alzheimers.htm
The Alzheimer's disease arm of the Accelerating Medicines Partnership (AMP) that will identify biomarkers that can predict clinical outcomes, conduct a large scale analysis of human AD patient brain tissue samples to validate biological targets, and to increase the understanding of molecular pathways involved in the disease to identify new potential therapeutic targets. The initiative will deposit all data in a repository that will be accessible for use by the biomedical community. The five year endeavor, beginning in 2014, will result in several sets of project outcomes. For the biomarkers project, tau imaging and EEG data will be released in year two, as baseline data becomes available. Completed data from the randomized, blinded trials will be added after the end of the five year studies. This will include both imaging data and data from blood and spinal fluid biomarker studies. For the network analysis project, each project will general several network models of late onset AD (LOAD) and identify key drivers of disease pathogensis by the end of year three. Years four and five will be dedicated to validating the novel targets and refining the network models of LOAD, including screening novel compounds or drugs already in use for other conditions that may have the ability to modulate the likely targets.
Proper citation: Accelerating Medicines Partnership - Alzheimers (RRID:SCR_003742) Copy
Unit studying human cognition and the brain with about 90 researchers and postgraduate students investigating topics such as attention, emotion, language and memory. They are developing new treatments for depression, improving hearing through cochlear implants, and helping children to overcome memory problems. With a large collection of scientists engaged in both basic and translational research on the mind and brain, the Unit provides an exceptional training and academic environment that benefits postgraduate students and researchers at all levels. A significant part of their research makes use of brain imaging and they have excellent on-site facilities for magnetic resonance imaging (MRI) magnetoencephalography (MEG) and electroencephalography (EEG). They also have clinical facilities at Addenbrooke's Hospital. The Unit has close links both with the hospital and with Cambridge University.
Proper citation: MRC Cognition and Brain Sciences Unit (RRID:SCR_003818) Copy
http://synapses.clm.utexas.edu
A portal into the 3D ultrastructure of the brain providing: Anatomy of astrocytes, axons, dendrites, hippocampus, organelles, synapses; procedures of 3D reconstruction and tissue preparation; as well as an atlas of ultrastructural neurocytology (by Josef Spacek), online aligned images, and reconstructed dendrites. Synapse Web hosts an ultrastructural atlas containing more than 500 electron micrographs (added to regularly) that identify unique ultrastructural and cellular components throughout the brain. Additionally, Synapse Web has raw images, reconstructions, and quantitative data along with tutorial instructions and numerous tools for investigating the functional structure of objects that have been serial thin sectioned for electron microscopy.
Proper citation: Synapse Web (RRID:SCR_003577) Copy
http://medschool.umaryland.edu/btbank/
The objective of this human tissue repository is to systematically collect, store, and distribute brain and other tissues for research dedicated to the improved understanding, care, and treatment of individuals with developmental disorders. Brain sections are primarily frozen in isopentane / dry ice. Tissues are stored in 10% formalin and frozen at -85 degrees C. Of special interest are individuals with Down syndrome and other chromosomal defects, mitochondrial encephalopathies, phenylketonuria and other aminoacidopathies, maternal PKU, Rett syndrome, leukodystrophies, lysosomal disorders, dyslexia, autism, and other neurodevelopmental disorders. The brain and tissue banks have extensive experience in arranging for the rapid retrieval of tissue upon the death of individuals who die while at home, in hospitals or hospice care. As a special service, the brain and tissue banks are able to assist researchers who are working with patients who intend to donate tissues at the time of their death. Immediately after retrieval of the tissue, the brain and tissue banks will forward needed tissue to the referring investigators and ensure proper storage and cataloging of any additional tissues as part of the brain and tissue banks. The recipient of tissue and the brain and tissue banks are required to sign a Tissue Transfer Agreement before any tissues are transferred.
Proper citation: NICHD Brain and Tissue Bank for Developmental Disorders (RRID:SCR_003601) Copy
A network for supporting resting-state fMRI (R-fMRI) related studies. It connects R-fMRI researchers (as nodes) by their sharings (as edges). Through the network, ideas, comments, resources, tools, experiences, and data can be shared. Researchers (nodes) with basic neuroscience, methodological, or clinical backgrounds can connect with each other in the network. It also contains a preprint server that allows neuroscientists to share their preprints, comment on each others research and get back valuable information about their experiments from their colleagues. This is based on the arXiv model. Ultimately, the network aims to enhance collaborations among researchers, especially to translate knowledge of basic neuroscience and methodology to clinical applications (bench to bedside).
Proper citation: RFMRI.ORG (RRID:SCR_004042) Copy
Cre expressing mice under the control of promoters with a design focus on the brain. Each promoter is derived from human sequence, but the resulting expression is assessed in the mouse for the activation of a LacZ reporter gene by the Cre activity. Promoters tested as large MaxiPromoters (BACs inserted into the mouse genome) and MiniPromoters (plasmid-based sequences inserted either into the mouse genome or introduced within AAV viruses). The Cre-related project continues from the Pleiades Promoter Project. Here is the list of genes for which icre/ERT2 mice are currently in development: AGTR1, CARTPT, CLDN5, CLVS2, CRH, GABRA6, HTR1A, HTR1B, KCNA4, KDM5C, MKI67, NEUROD6, NKX6-1, NOV, NPY2R, NR2E1, OLIG2, POU4F2, SLITRK6, SOX1, SOX3, SOX9,, SPRY1, VSX2
Proper citation: CanEuCre (RRID:SCR_004159) Copy
https://www.uab.edu/medicine/alzheimers/
The UAB Alzheimer's Disease Center provides comprehensive treatment for Alzheimer's patients while also promoting research for the prevention and cure of Alzheimer's disease and related disorders. The ADC is an interdisciplinary program of scientists working in areas including neurology, psychiatry, genetics, and psychology. The Center provides comprehensive treatment and promotes research for the prevention and/or cure of Alzheimer's disease and other related disorders with memory loss and impaired cognition. A major emphasis of research is the maintenance of a clinical research database comprised of neurological, medical, and neuropsychological test data from participants seen in the ADRC Clinical study since 1999, many of whom have been followed for several years in the study.
Proper citation: UAB Alzheimer's Disease Center (RRID:SCR_004305) Copy
http://www.brainnet-europe.org/
THIS RESOURCE IS NO LONGER IN SERVICE.Documented on July 7, 2022. Consortium of 19 brain banks across Europe with an aim to harmonize neuropathological diagnostic criteria and develop gold standards for quality, safety and ethics standards for brain banking. BrainNet Europe also contributes to research on rare diseases, such as: Pick''s disease or other rare forms of dementia, as well as to questions after the events in the aging brain. Anyone can be a donor - irrespective of disease of the central nervous system or not, because for research purposes, one does not only need tissue samples from ill donors, but also from healthy ones for comparison.
Proper citation: BrainNet Europe (RRID:SCR_004461) Copy
http://www.epilepsy.ie/index.cfm/spKey/research.html
Epilepsy Research Ireland is a non-profit organization (Charity CHY17527), run by a group of volunteers, who are dedicated to find cure for epilepsy by raising awareness and money for research. We can say cure now with much more confidence than we could even 10 years ago because recent advances in genetics, brain imaging and drug therapy, all hold out the promise of that holy grail the cure. We can also say with confidence that you can be part of that push by participating in this new foundation since we have collaborations with doctors and scientists all over Europe, the US and Australia, all of whom share the same goal. Epilepsy research, conducted by Epilepsy Research Ireland, is essential and will deliver benefits across the board. Research planned and already underway by Epilepsy Research Ireland will help develop and improve clinical skills; it will provide a knowledge base to develop new ways to manage and treat epilepsy; it will help in the evaluation of new medical advances. Ultimately we can improve the quality of care and provide greater understanding, better and more accurate diagnosis and more tailored treatments. Ireland is uniquely well-positioned, given its relatively homogenous population to make the goal, of making real discoveries in epilepsy research that will directly improve the lives of people with epilepsy, a realistic one.
Proper citation: Epilepsy Research Ireland (RRID:SCR_004448) Copy
http://caintegrator-info.nci.nih.gov/rembrandt
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on April 28,2023. REMBRANDT is a data repository containing diverse types of molecular research and clinical trials data related to brain cancers, including gliomas, along with a wide variety of web-based analysis tools that readily facilitate the understanding of critical correlations among the different data types. REMBRANDT aims to be the access portal for a national molecular, genetic, and clinical database of several thousand primary brain tumors that is fully open and accessible to all investigators (including intramural and extramural researchers), as well as the public at-large. The main focus is to molecularly characterize a large number of adult and pediatric primary brain tumors and to correlate those data with extensive retrospective and prospective clinical data. Specific data types hosted here are gene expression profiles, real time PCR assays, CGH and SNP array information, sequencing data, tissue array results and images, proteomic profiles, and patients'''' response to various treatments. Clinical trials'''' information and protocols are also accessible. The data can be downloaded as raw files containing all the information gathered through the primary experiments or can be mined using the informatics support provided. This comprehensive brain tumor data portal will allow for easy ad hoc querying across multiple domains, thus allowing physician-scientists to make the right decisions during patient treatments., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Repository of molecular brain neoplasia data (RRID:SCR_004704) Copy
http://www.ukmstissuebank.imperial.ac.uk/news3d.html
Procures brain, spinal cord and other tissues bequeathed by donors and makes them available to scientists investigating the cause and treatment of multiple sclerosis. The Tissue Bank achieves this aim by addressing the following objectives: # Increasing the awareness of the importance of human tissue to research amongst the MS and scientific communities. # Being sensitive to the needs of the tissue donor and responsive to the requirements of scientists when collecting and processing donated tissue. # Making available high quality, well-documented samples of tissue to research scientists working to better understand MS. There are approximately 85 000 people with multiple sclerosis in the United Kingdom. The varied symptoms experienced by all these people result from damage taking place within their brain and spinal cord. Understanding the exact nature of this damage is essential if we are to better treat the condition. Vital information about how the brain and spinal cord are damaged in multiple sclerosis can be obtained by using a multitude of experimental approaches to study the affected tissue from people with MS and ''control'' tissue from people without the disease. The donation of tissue for research is therefore fundamental to furthering our understanding of the causes of multiple sclerosis and to developing more effective treatments for the disease. The UK Multiple Sclerosis Tissue Bank welcomes requests for tissue samples for use in research into the cause and treatment of multiple sclerosis. It has available post mortem, cryopreserved brain and spinal cord tissue both fixed and unfixed, and cerebrospinal fluid from patients with and without a history of multiple sclerosis. Freshly dissected tissue samples, or those preserved using unconventional techniques may also be made available by prior arrangement.
Proper citation: UK Multiple Sclerosis Tissue Bank (RRID:SCR_004609) Copy
At Brain Injury Alliance of Kentucky (BIAK), a 501(c)(3) non-profit agency, our sole mission is to serve Kentucky citizens whose lives have been affected by brain injury. We do this through advocacy, education, prevention, research, service and support. BIAK links survivors of brain injury and their families to support from others with similar experience; provides them with education and information about living and coping with brain injury; assists them in locating resources for financial assistance; and seeks to connect people with sources of emotional support. BIAK began as an outgrowth of a Lexington area support group in the early 1980s. Family members, medical staff and others felt the need to expand the services and support to reach statewide. The state office was moved to Louisville and incorporated in 1986. BIAK now has offices and staff in Louisville and Lexington. BIAK seeks to share its philosophy, experience and skills with survivors, family members, students, caregivers, administrators, health professionals, legislators, the lay community and all those who desire to make a difference in the life of individuals with brain injuries and their families. At BIAK you will find information about brain injury. We define brain injury as any injury to the brain including injury received from a fall, a stroke, trauma, anoxia, infection, and tumors or other illnesses. Each year, a growing number of Kentucky citizens are affected by brain tumors. These may range from benign tumors to aggressive cancers. The Michael Quinlan Brain Tumor program recently joined BIAK to provide service and support to individuals and families who have been affected by brain tumors. There is always help available to you and your family.
Proper citation: Brain Injury Alliance of Kentucky (RRID:SCR_004764) Copy
The Pediatric Low Grade Astrocytoma (PLGA) Foundation is the largest, and only, non-profit organization dedicated to providing hope to children, parents, and families fighting Pediatric Low Grade Astrocytomas (PLGAs). We were founded in August 2007, as a 501(c)(3) foundation made up of families and friends dedicated to helping children who are struggling with brain tumors. To date, families associated with the Pediatric Low Grade Astrocytoma (PLGA) Foundation have raised over $6 million for DEDICATED PLGA research and funded over a dozen new research projects targeted specifically at children''s brain tumors or PLGA''s. These funds have supported the launch of the Dana Farber Cancer Institute''s PLGA Research Program as well as numerous grants distributed by the Brain Tumor Society, and other fine institutions. The PLGA Foundation awards 100% of funds to education and research in the search for more effective, less toxic treatment options for this potentially devastating childhood brain tumor. The PLGA Foundation actively promotes partnerships with other non-profit organizations, private individuals and government entities and has collaborated on fund raising, education and grant allocations in order to leverage resources and funds. Our goal at the Pediatric Low Grade Astrocytoma (PLGA) Foundation, also known as Fight Juvenile Pilocytic Astrocytoma (FightJPA.org), is to UNITE families around the country and around the world in the FIGHT for the lives of our children who suffer from PLGAs - childhood brain tumors. We can defeat childhood brain tumors through a united effort on all fronts to increase awareness, education, fundraising and research of pediatric low grade astrocytomas.
Proper citation: Pediatric Low Grade Astrocytoma Foundation (RRID:SCR_004758) Copy
Central repository of information on neuronal cell types mainly accumulating information on: Genetically labeled cell types in mouse brain and genetically engineered mouse lines for cell type research. Mouse lines are annotated with * Atlas for examining transgene expression patterns * Information on construct used to generate transgene * Associated publications * Anatomical regions where transgene is expressed (based on Atlas) * Information on where to obtain the animals Currently, the mouse lines in the database are mostly generated at Cold Spring Harbor Lab, Scripps Research Institute, Baylor College of Medicine and Brandeis University with few other exceptions. In the future, they will incorporate more mouse lines useful for neuronal cell type research. Cell types are annotated with * Anatomical region * Properties (frequently used terms in neuroscience research) * Mouse line used to define the cell type * Genome wide transcriptome data (if available) * Specific (marker) genes (if available) * Marker immunostaining data (if available) * Associated publications * Electrophysiological characterizations (when available) * Morphological characterizations (when available)
Proper citation: celltypes.org (RRID:SCR_004545) Copy
http://www.rls.org/Page.aspx?pid=540
The Restless Legs Syndrome Foundation established the RLS Foundation Brain Bank at the Harvard Brain Tissue Resource Center in 2000. A part of the Harvard University medical system, the Center (housed at McLean Hospital and commonly referred to as The Brain Bank) began in 1978 as a centralized resource for the collection and distribution of human brain specimens for research and diagnostic studies. Over the years, hundreds of scientists from the nation''s top research and medical centers have requested tissue from The Brain Bank for their investigations. Because most of these studies can be carried out on a very small amount of tissue, each donated brain provides a large number of samples for many researchers. For comparative purposes, brain tissue is needed from healthy individuals, as well as from those who had RLS. When possible, a small portion of frozen tissue taken from each brain donated to the RLS Foundation Collection will be kept available to serve as a resource for future genetic testing. The process of donating your brain to RLS research is broken down into 5 steps. To view these steps, please read our Process Steps in RLS Brain Tissue Collection. To read about the process of donating brain tissue for research, visit our Brain Bank Tissue Donation page.
Proper citation: RLS Foundation Brain Bank (RRID:SCR_005089) Copy
FlyAtlas gives you a quick answer to the question: where is my gene of interest expressed/enriched in the adult fly? For each gene and tissue, you''re given the mRNA SIGNAL (how abundant the mRNA is), the mRNA ENRICHMENT (compared to whole flies), and the Affymetrix PRESENT CALL (out of 4 arrays, how many times it was detectably expressed). The dataset so far comprises 44 Affymetrix Dros2 expression arrays, each mapping the expression of 18770 transcripts - corresponding to the vast majority of known Drosophila genes. The dataset thus contains over 822800 separate datapoints. This website is intended to make the data easily accessible and comprehensible to mere mortals. FlyAtlas provides the most comprehensive view yet of expression in multiple tissues of Drosophila melanogaster. Meta-analysis of the data shows that a significant fraction of the genome is expressed with great tissue specificity in the adult, demonstrating the need for the functional genomic community to embrace a wide range of functional phenotypes. Well-known developmental genes are often reused in surprising tissues in the adult, suggesting new functions. The homologs of many human genetic disease loci show selective expression in the Drosophila tissues analogous to the affected human tissues, providing a useful filter for potential candidate genes. Additionally, the contributions of each tissue to the whole-fly array signal can be calculated, demonstrating the limitations of whole-organism approaches to functional genomics and allowing modeling of a simple tissue fractionation procedure that should improve detection of weak or tissue-specific signals.
Proper citation: FlyAtlas: the Drosophila gene expression atlas (RRID:SCR_005032) Copy
http://elderaffairs.state.fl.us/doea/BrainBank/index.php
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 11, 2023. A service and research oriented network of statewide regional brain bank sites. The intent of the brain bank program is to study brains of persons clinically diagnosed with dementia and provide tissue for research after their deaths. Mt. Sinai Medical Center contracts annually with the State of Florida to operate the primary brain bank. Coordinators at regional brain bank sites in Orlando, Tampa and Pensacola assist in recruiting participants and act as liaisons between the brain bank and participant families. Alzheimer's disease respite care program providers, memory disorder clinics, and model day care programs also recruit brain bank participants. The Florida Brain Bank supports collaborative research programs related to Alzheimer's disease and other degenerative disorders of the brain.
Proper citation: Florida Brain Bank (RRID:SCR_004936) Copy
The Alzheimer's and Dementia Resource Center (ADRC) facilitates tissue donations for the Brain Bank Research Program in order to help find better treatments, more diagnostic tools and a cure for Alzheimer's disease and dementia. The Brain Bank Program is administered by Mount Sinai Medical Center in Miami Beach and under contract with the Florida Department of Elder Affairs. ADRC also provides caregivers with the educational resources, spiritual comfort and emotional support. The ADRC facilitates training for professional caregivers that meets requirements for the Florida Department of Elder Affairs.
Proper citation: Alzheimer's and Dementia Resource Center (RRID:SCR_004924) Copy
http://brainethics.org/?page_id=849
How do the recent developments in neuroscience affect psychology and society? Today, many new findings challenge the way we think about ourselves and others. These changes impact on how we should think about issues such as the self, mentality, psychology, free will, morale, law and society. Through interviews of prominent scholars in the fields of neuroscience and beyond, the BrainEthics Podcast provides updated, novel and comprehensive news and views from the world of neuroscience, and how the world responds to it. We provide a full list of all podcast episodes. Although we are hosting all episodes, you can also subscribe to the podcast on all major podcasting directories.
Proper citation: BrainEthics Podcast (RRID:SCR_005533) Copy
https://github.com/SciCrunch/NIF-Ontology
The NIF Standard Ontology (NIFSTD) is a collection of modular ontologies that provides an extensive set of terms and concepts important for the domains of neuroscience and biology, as well as the data and resources relevant for the life sciences. It is a core component of the Neuroscience Information Framework (NIF) project, a semantically enhanced portal for accessing and integrating neuroscience data, tools and information.
Proper citation: NIFSTD (RRID:SCR_005414) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.