Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.rcsb.org/#Category-welcome
Collection of structural data of biological macromolecules. Database of information about 3D structures of large biological molecules, including proteins and nucleic acids. Users can perform queries on data and analyze and visualize results.
Proper citation: Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) (RRID:SCR_012820) Copy
A genome browser that includes mappings between genomic features and Affymetrix microarrays. Associated with annmap is: * a Bioconductor package, annmap that provides programmatic access to the underlying MySQL database tables (which are freely available for download on this site) * xmapbridge, a Bioconductor package that outputs numeric data in a form suitable for presentation in the browser. This is supported by XMapBridge, a Java client that sits on the local desktop and performs the graph rendering for the browser.
Proper citation: Annmap (RRID:SCR_011783) Copy
http://inparanoid.sbc.su.se/cgi-bin/index.cgi
Collection of pairwise comparisons between 100 whole genomes generated by a fully automatic method for finding orthologs and in-paralogs between TWO species. Ortholog clusters in the InParanoid are seeded with a two-way best pairwise match, after which an algorithm for adding in-paralogs is applied. The method bypasses multiple alignments and phylogenetic trees, which can be slow and error-prone steps in classical ortholog detection. Still, it robustly detects complex orthologous relationships and assigns confidence values for in-paralogs. The original data sets can be downloaded.
Proper citation: InParanoid: Eukaryotic Ortholog Groups (RRID:SCR_006801) Copy
Curated protein-protein and genetic interaction repository of raw protein and genetic interactions from major model organism species, with data compiled through comprehensive curation efforts.
Proper citation: Biological General Repository for Interaction Datasets (BioGRID) (RRID:SCR_007393) Copy
Public database that stores areas of genome that differ between individual genomes (variants) and, where available, associated disease and phenotype information. Different types of variants for several species: single nucleotide polymorphisms (SNPs), short nucleotide insertions and/or deletions, and longer variants classified as structural variants (including CNVs). Effects of variants on the Ensembl transcripts and regulatory features for each species are predicted. You can run same analysis on your own data using Variant Effect Predictor. These data are integrated with other data sources in Ensembl, and can be accessed using the API or website. For several different species in Ensembl, they import variation data (SNPs, CNVs, allele frequencies, genotypes, etc) from a variety of sources (e.g. dbSNP). Imported variants and alleles are subjected to quality control process to flag suspect data. In human, they calculate linkage disequilibrium for each variant, by population.
Proper citation: Ensembl Variation (RRID:SCR_001630) Copy
http://mips.gsf.de/genre/proj/yeast/index.jsp
The MIPS Comprehensive Yeast Genome Database (CYGD) aims to present information on the molecular structure and functional network of the entirely sequenced, well-studied model eukaryote, the budding yeast Saccharomyces cerevisiae. In addition, the data of various projects on related yeasts are used for comparative analysis.
Proper citation: CYGD - Comprehensive Yeast Genome Database (RRID:SCR_002289) Copy
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 17,2023. A database of genes and interventions connected with aging phenotypes including those with respect to their effects on life-span or age-related neurological diseases. Information includes: organism, aging phenotype, allele type, strain, gene function, phenotypes, mutant, and homologs. If you know of published data (or your own unpublished data that you'd like to share) not currently in the database, please use the Submit a Gene/Intervention link.
Proper citation: Aging Genes and Interventions Database (RRID:SCR_002701) Copy
MicrobesOnline is designed specifically to facilitate comparative studies on prokaryotic genomes. It is an entry point for operon, regulons, cis-regulatory and network predictions based on comparative analysis of genomes. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.
Proper citation: MicrobesOnline (RRID:SCR_005507) Copy
The Roth Laboratory is designing and interpreting large-scale experiments to understand pathway structure and its relationship to phenotype and human disease. Software for research focused on a specific research goal is available. Current experimental interests: * Exploiting parallel sequencing technology to phenotype all pairwise gene deletion combinations in S. cerevisiae, with initial application to genes involved in transcription. * Generation of S. cerevisiae strains carrying dozens of chosen targeted deletions, with initial application to delete all ABC transporters imparting multidrug resistance. * Targeted insertion of gene sets encoding entire human pathways into S. cerevisiae, with initial application to genes involved in drug metabolism. Current computational interests: * Systematic analysis of genetic interaction to reveal redundant systems and order of action in genetic pathways * Integrating large-scale studies - including phenotype, genetic epistasis, protein-protein and transcription-regulatory interactions and sequence patterns - to quantitatively assign function to genes and guide experimentation and disease association studies. * Alternative splicing and its relationship to protein interaction networks.
Proper citation: Roth Laboratory (RRID:SCR_005711) Copy
Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMANIA (RRID:SCR_005709) Copy
http://llama.mshri.on.ca/gofish/GoFishWelcome.html
Software program, available as a Java applet online or to download, allows the user to select a subset of Gene Ontology (GO) attributes, and ranks genes according to the probability of having all those attributes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: GoFish (RRID:SCR_005682) Copy
http://stormo.wustl.edu/ScerTF
Catalog of over 1,200 position weight matrices (PWMs) for 196 different yeast transcription factors (TFs). They've curated 11 literature sources, benchmarked the published position-specific scoring matrices against in-vivo TF occupancy data and TF deletion experiments, and combined the most accurate models to produce a single collection of the best performing weight matrices for Saccharomyces cerevisiae. ScerTF is useful for a wide range of problems, such as linking regulatory sites with transcription factors, identifying a transcription factor based on a user-input matrix, finding the genes bound/regulated by a particular TF, and finding regulatory interactions between transcription factors. Enter a TF name to find the recommended matrix for a particular TF, or enter a nucleotide sequence to identify all TFs that could bind a particular region.
Proper citation: ScerTF (RRID:SCR_006121) Copy
FungiDB is a database for functional and evolutionary comparison of fungal genomes. FungiDB is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal "Zygomycete" lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.
Proper citation: FungiDB (RRID:SCR_006013) Copy
http://www.kidneycenter.pitt.edu/cores/model_organisms.html
Core that uses the yeast S. cerevisiae and the zebrafish D. rerio to dissect fundamental aspects of kidney development and protein structure and function.
Proper citation: Pittsburgh Center for Kidney Research Model Organisms (RRID:SCR_015288) Copy
DNAtraffic database is dedicated to be an unique comprehensive and richly annotated database of genome dynamics during the cell life. DNAtraffic contains extensive data on the nomenclature, ontology, structure and function of proteins related to control of the DNA integrity mechanisms such as chromatin remodeling, DNA repair and damage response pathways from eight model organisms commonly used in the DNA-related study: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Escherichia coli and Arabidopsis thaliana. DNAtraffic contains comprehensive information on diseases related to the assembled human proteins. Database is richly annotated in the systemic information on the nomenclature, chemistry and structure of the DNA damage and drugs targeting nucleic acids and/or proteins involved in the maintenance of genome stability. One of the DNAtraffic database aim is to create the first platform of the combinatorial complexity of DNA metabolism pathway analysis. Database includes illustrations of pathway, damage, protein and drug. Since DNAtraffic is designed to cover a broad spectrum of scientific disciplines it has to be extensively linked to numerous external data sources. Database represents the result of the manual annotation work aimed at making the DNAtraffic database much more useful for a wide range of systems biology applications. DNAtraffic database is freely available and can be queried by the name of DNA network process, DNA damage, protein, disease, and drug.
Proper citation: DNAtraffic (RRID:SCR_008886) Copy
http://biodev.extra.cea.fr/interoporc/
Automatic prediction tool to infer protein-protein interaction networks, it is applicable for lots of species using orthology and known interactions. The interoPORC method is based on the interolog concept and combines source interaction datasets from public databases as well as clusters of orthologous proteins (PORC) available on Integr8. Users can use this page to ask InteroPorc for all species present in Integr8. Some results are already computed and users can run InteroPorc to investigate any other species. Currently, the following databases are processed and merged (with datetime of the last available public release for each database used): IntAct, MINT, DIP, and Integr8.
Proper citation: InteroPorc (RRID:SCR_002067) Copy
Data resource that includes a large collection of genome-wide ChIP-Seq experiments performed on transcription factors (TFs), histone modifications, RNA polymerases and others. Enriched peak regions from the ChIP-Seq experiments are crossed with the genomic coordinates of a set of input genes, to identify which of the experiments present a statistically significant number of peaks within the input genes' loci. The input can be a cluster of co-expressed genes, or any other set of genes sharing a common regulatory profile. Users can thus single out which TFs are likely to be common regulators of the genes, and their respective correlations. Also, by examining results on promoter activation, transcription, histone modifications, polymerase binding and so on, users can investigate the effect of the TFs (activation or repression of transcription) as well as of the cell or tissue specificity of the genes' regulation and expression.
Proper citation: Cscan (RRID:SCR_006756) Copy
http://phenom.ccbr.utoronto.ca/index.jsp
Database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae, it allows storing, retrieving, visualizing and data mining the quantitative single-cell measurements extracted from micrographs of the temperature-sensitive (ts) mutant cells. PhenoM allows users to rapidly search and retrieve raw images and their quantified morphological data for genes of interest. The database also provides several data-mining tools, including a PhenoBlast module for phenotypic comparison between mutant strains and a Gene Ontology module for functional enrichment analysis of gene sets showing similar morphological alterations. About one-fifth of the genes in the budding yeast are essential for haploid viability and cannot be functionally assessed using standard genetic approaches such as gene deletion. To facilitate genetic analysis of essential genes, we and others have assembled collections of yeast strains expressing temperature-sensitive (ts) alleles of essential genes. To explore the phenotypes caused by essential gene mutation we used a panel of genetically engineered fluorescent markers to explore the morphology of cells in the ts strain collection using high-throughput microscopy. The database contains quantitative measurements of 1,909,914 cells and 78,194 morphological images for 775 temperature-sensitive mutants spanning 491 different essential genes in permissive temperature (26* C) and restrictive temperature (32* C). The morphological images were generated by high-content screening (HCS) technology.
Proper citation: PhenoM - Phenomics of yeast Mutants (RRID:SCR_006970) Copy
http://yetfasco.ccbr.utoronto.ca/
Collection of all available transcription factor (TF) specificities for the yeast Saccharomyces cerevisiae in Position Frequency Matrix (PFM) or Position Weight Matrix (PWM) formats. The specificities are evaluated for quality using several metrics. With this website, you can scan sequences with the motifs to find where potential binding sites lie, inspect precomputed genome-wide binding sites, find which TFs have similar motifs to one you have found, and download the collection of motifs. Submissions are welcome.
Proper citation: YeTFaSCo (RRID:SCR_006893) Copy
http://organelledb.lsi.umich.edu/
Database of organelle proteins, and subcellular structures / complexes from compiled protein localization data from organisms spanning the eukaryotic kingdom. All data may be downloaded as a tab-delimited text file and new localization data (and localization images, etc) for any organism relevant to the data sets currently contained in Organelle DB is welcomed. The data sets in Organelle DB encompass 138 organisms with emphasis on the major model systems: S. cerevisiae, A. thaliana, D. melanogaster, C. elegans, M. musculus, and human proteins as well. In particular, Organelle DB is a central repository of yeast protein localization data, incorporating results from both previous and current (ongoing) large-scale studies of protein localization in Saccharomyces cerevisiae. In addition, we have manually curated several recent subcellular proteomic studies for incorporation in Organelle DB. In total, Organelle DB is a singular resource consolidating our knowledge of the protein composition of eukaryotic organelles and subcellular structures. When available, we have included terms from the Gene Ontologies: the cellular component, molecular function, and biological process fields are discussed more fully in GO. Additionally, when available, we have included fluorescent micrographs (principally of yeast cells) visualizing the described protein localization. Organelle View is a visualization tool for yeast protein localization. It is a visually engaging way for high school and undergraduate students to learn about genetics or for visually-inclined researchers to explore Organelle DB. By revealing the data through a colorful, dimensional model, we believe that different kinds of information will come to light.
Proper citation: Organelle DB (RRID:SCR_007837) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.