Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://www.angis.org.au/Databases/Heart/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 23, 2016. The aim of this locus-specific mutation database was to provide an online resource that contains summarized and updated information on familial hypertrophic cardiomyopathy (FHC)-associated mutations and related data, for researchers and clinicians. It also serves as a means of publishing previously unpublished data, which could be of value in understanding genotype/phenotype correlations. This database contains mutations in various genes known to cause familial hypertrophic cardiomyopathy, a genetic disorder associated with defects in the sarcomere [1]. Only gene symbols approved by HUGO are used and mutations are reported in accordance with guidelines recommended by the Mutation Database Initiative of HUGO and EBI.
Proper citation: Familial Hypertrophic Cardiomyopathy DNA Mutation Database (RRID:SCR_002346) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented July 15, 2016. Database containing location and descriptive information about a wide variety of information resources including organizations, research resources, projects, and databases concerned with health and biomedicine. This information may not be readily available in bibliographic databases. Each record may contain information on the publications, holdings, and services provided. These information resources fall into many categories including federal, state, and local government agencies; information and referral centers; professional societies; self-help groups and voluntary associations; academic and research institutions and their programs; information systems and research facilities. Topics include HIV/AIDS, maternal and child health, most diseases and conditions including genetic and other rare diseases, health services research and technology assessment. DIRLINE can be searched using subject words (such as disease or condition) including Medical Subject Headings (MeSH) or for the name or location of a resource. It now offers an A to Z list of over 8,500 organizations.
Proper citation: Directory of Health Organizations Online (RRID:SCR_002331) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. An international collaboration between 46 labs from 20 different countries towards a low resolution canine marker map under the auspices of the International Society for Animal Genetics (ISAG). The map under development should achieve a resolution of about 20 cM and some of the markers should be mapped physically. The participants have agreed to use microsatellites as markers on a common panel of reference families which will provide the backbone of the marker map. It is foreseen to also include type I markers in the mapping effort and to produce cosmid derived microsatellites for physical mapping. For this purpose part of the effort focuses on the standardization of the canine karyotype. Special attention is payed to hereditary diseases where efforts are under way to establish resource families either by collecting families or by specific breeding. A point of emphasis of the DogMap project is the setting up of an internationally accessible database for handling the mapping data. The structure of the DogMap collaboration includes a managing committee and scientific advisers. The managing committee is responsible for the overall coordination of the activities within the collaboration, for the dissemination of relevant information to all of the participants and for the representation of DogMap outside the collaboration., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: DogMap (RRID:SCR_002332) Copy
Knowledgebase that uses ontologies to integrate phenotypic data from genetic studies of zebrafish with evolutionary variable phenotypes from the systematic literature of ostariophysan fishes. Users can explore the data by searching for anatomical terms, taxa, or gene names. The expert system enables the broad scale analysis of phenotypic variation across taxa and the co-analysis of these evolutionarily variable features with the phenotypic mutants of model organisms. The Knowledgebase currently contains 565,158 phenotype statements about 2,527 taxa, sourced from 57 publications, as well as 38,189 phenotype statements about 4,727 genes, retrieved from ZFIN. 2013-01-26.
Proper citation: Phenoscape Knowledgebase (RRID:SCR_002821) Copy
http://www.bioconductor.org/packages/release/bioc/html/CGEN.html
Software R package for analysis of case-control studies in genetic epidemiology.
Proper citation: CGEN (RRID:SCR_001251) Copy
http://www.genome.jp/kegg/expression/
Database for mapping gene expression profiles to pathways and genomes. Repository of microarray gene expression profile data for Synechocystis PCC6803 (syn), Bacillus subtilis (bsu), Escherichia coli W3110 (ecj), Anabaena PCC7120 (ana), and other species contributed by the Japanese research community.
Proper citation: Kyoto Encyclopedia of Genes and Genomes Expression Database (RRID:SCR_001120) Copy
http://neuronalarchitects.com/ibiofind.html
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 17, 2016. C#.NET 4.0 WPF / OWL / REST / JSON / SPARQL multi-threaded, parallel desktop application enables the construction of biomedical knowledge through PubMed, ScienceDirect, EndNote and NIH Grant repositories for tracking the work of medical researchers for ranking and recommendations. Users can crawl web sites, build latent semantic indices to generate literature searches for both Clinical Translation Science Award and non-CTSA institutions, examine publications, build Bayesian networks for neural correlates, gene to gene interactions, protein to protein interactions and as well drug treatment hypotheses. Furthermore, one can easily access potential researcher information, monitor and evolve their networks and search for possible collaborators and software tools for creating biomedical informatics products. The application is designed to work with the ModelMaker, R, Neural Maestro, Lucene, EndNote and MindGenius applications to improve the quality and quantity of medical research. iBIOFind interfaces with both eNeoTutor and ModelMaker 2013 Web Services Implementation in .NET for eNeoTutor to aid instructors to build neuroscience courses as well as rare diseases. Added: Rare Disease Explorer: The Visualization of Rare Disease, Gene and Protein Networks application module. Cinematics for the Image Finder from Yale. The ability to automatically generate and update websites for rare diseases. Cytoscape integration for the construction and visualization of pathways for Molecular targets of Model Organisms. Productivity metrics for medical researchers in rare diseases. iBIOFind 2013 database now includes over 150 medical schools in the US along with Clinical Translational Science Award Institutions for the generation of biomedical knowledge, biomedical informatics and Researcher Profiles.
Proper citation: iBIOFind (RRID:SCR_001587) Copy
http://www.morpholinodatabase.org/
Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.
Proper citation: Morpholino Database (RRID:SCR_001378) Copy
http://www.well.ox.ac.uk/happy/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on February 28,2023. Software package for Multipoint QTL Mapping in Genetically Heterogeneous Animals (entry from Genetic Analysis Software) The method is implemented in a C-program and there is now an R version of HAPPY. You can run HAPPY remotely from their web server using your own data (or try it out on the data provided for download).
Proper citation: Happy (RRID:SCR_001395) Copy
http://www.norcomm.org/index.htm
Large-scale research initiative focused on developing and distributing a library of mouse embryonic stem (ES) cell lines carrying single gene trapped or targeted mutations across the mouse genome. NorCOMM's large and growing archive of ES cells is publicly available on a cost-recovery basis from the Canadian Mouse Mutant Repository. As an international public resource, access to clones is unrestricted and nonexclusive. Through NorCOMM's affiliation with the Canadian Mouse Consortium (CMC), NorCOMM also provides clients with a single point of access to regional mouse derivation, phenotyping, genetic and archiving services across Canada. These value-added services can help your company harness NorCOMM's resources for drug discovery, target discovery and preclinical validation.
Proper citation: North American Conditional Mouse Mutagenesis Project (RRID:SCR_001614) Copy
Issue
http://www.nitrc.org/projects/plink
Open source whole genome association analysis toolset, designed to perform range of basic, large scale analyses in computationally efficient manner. Used for analysis of genotype/phenotype data. Through integration with gPLINK and Haploview, there is some support for subsequent visualization, annotation and storage of results. PLINK 1.9 is improved and second generation of the software.
Proper citation: PLINK (RRID:SCR_001757) Copy
Portal for researchers to locate information relevant to interpretation and follow-up of human genetic epidemiological discoveries, including: a range of population and case and family genetic epidemiological studies, relevant gene and sequence databases, genetic variation databases, trait measurement, resource labs, journals, software, general information, disease genes and genetic diversity.
Proper citation: Online Encyclopedia for Genetic Epidemiology studies (RRID:SCR_001825) Copy
http://icahn.mssm.edu/research/resources/shared-resource-facilities/in-vivo-molecular-imaging
The In-Vivo Molecular Imaging Laboratory (IMIL) is a MSSM shared resource facility serving the research community of Mount Sinai with equipment and imaging expertise. State-of-the-art bioluminescent as well as fluorescent imaging modalities are supported for in-vivo monitoring of cellular and genetic activity. Investigators are provided with cutting edge imaging technologies as well as analysis techniques. The long-term goal is to establish a comprehensive SRF for in-vivo molecular imaging using micro-MRI, micro-PET and other modalities. IMIL houses a Xenogen IVIS-200 Series imaging system with the integrated fluorescent imaging options. Simultaneous dual reporter in-vivo imaging is possible with bioluminescence and fluorescence probes. The imaging chamber has a gas anesthesia manifold that can accommodate up to 5 mice for simultaneously image acquisition. Selectable field of views allow in-plane (X,Y) imaging resolutions of up to 60-microm. Integrated spectra filters allow for the determination of signal source depth (Z). IMIL will provide data acquisition services as well as analysis. IMIL has a dedicated imaging technologist for data acquisition. Investigators will bring their prepared animal to the lab and an IMIL imaging technologist will assist in sedating the animals and acquire imaging data. Typical imaging sessions last about an hour. Certified users who are trained in the use of the software will be able to perform their own analysis at the console. Usage of the imaging device is charged by the hour ($100/hour). Structural Imaging The IVIS-200 has the built-in capability of obtaining an image of the surface topography of the animal for 2D and 3D localization. If additional true 3D imaging data is required, micro MRI is available through the Imaging Science Laboratories (ISL). Image Analysis The IVIS-200 has an integrated image acquisition and analysis software (Living Image Software 2.50). Comprehensive data quantification is possible with this software. Raw data as well as analyzed results can be electronically transferred to the investigators. Support is also available for additional image analysis such as intermodality coregistration, 3D rendering, and group statistics. Additional software packages include MedX, SPM, Brainvoyager, Analyze, and in-house developed software.
Proper citation: Mount Sinai School of Medicine: In-Vivo Molecular Imaging Laboratory (RRID:SCR_001785) Copy
A web-based application designed from a genetic epidemiology point of view to analyze association studies using single nucleotide polymorphisms (SNPs). For each selected SNP, you will receive: * Allele and genotype frequencies * Test for Hardy-Weinberg equilibrium * Analysis of association with a response variable based on linear or logistic regression * Multiple inheritance models: co-dominant, dominant, recessive, over-dominant and additive * Analysis of interactions (gene-gene or gene-environment) If multiple SNPs are selected: * Linkage disequilibrium statistics * Haplotype frequency estimation * Analysis of association of haplotypes with the response * Analysis of interactions (haplotypes-covariate)
Proper citation: SNPSTATS (RRID:SCR_002142) Copy
http://ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 23, 2019.BGMUT was database that provided publicly accessible platform for DNA sequences and curated set of blood mutation information. Data Archive are available at ftp://ftp.ncbi.nlm.nih.gov/pub/mhc/rbc/Final Archive.
Proper citation: Blood Group Antigen Gene Mutation Database (RRID:SCR_002297) Copy
Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.
Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy
https://www.drugabuse.gov/publications/drugfacts/genetics-epigenetics-addiction
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 17, 2013. An archived video on the web providing comprehensive and hands-on training in genetics and epigenetic methodology. The purpose of the course is to provide an introduction to approaches and tools for identifying genes that confer vulnerability to addiction and individual differences in responses to treatments. The course is targeted to those who are new to the field of addiction genetics. The course was held over 5 days with lectures and hands-on demonstrations given each day. Viewers of the course will gain familiarity with conceptual and practical approaches to complex disorders using relevant genetic and epigenetic databases, and appropriate statistical and empirical approaches. Topics covered Behavioral genetics, genetic epidemiology, twin and adoption studies, statistical genetic concepts and approaches for mapping complex traits, haplotype based approaches for association mapping, genome-wide scans for addictive disorders, application of linkage for mapping genes and genetic loci for addictive disorders, pharmacogenomics of treatment of addictive disorders, Baysian Methods for identifying gene-gene interactions, analysis of copy number variation, practical use of genetic databases, mapping of complex traits in mice, methods for analyzing gene expression, and methods for doing epigenetic analysis are covered. The course was held April 4, 2008, at the Bethesda North Marriott Hotel and Conference Center, 5701 Marinelli Road, Bethesda, MD 20852.
Proper citation: Short Course on the Genetics and Epigenetics of Addiction National Institute on Drug Abuse: Archived Video (RRID:SCR_002783) Copy
https://www.ddbj.nig.ac.jp/jga/index-e.html
A service for permanent archiving and sharing of all types of personally identifiable genetic and phenotypic data resulting from biomedical research projects. The JGA contains exclusive data collected from individuals whose consent agreements authorize data release only for specific research use or to bona fide researchers. Strict protocols govern how information is managed, stored and distributed by the JGA. Once processed, all data are encrypted. The JGA accepts only de-identified data approved by JST-NBDC. The JGA implements access-granting policy whereby the decisions of who will be granted access to the data resides with the JST-NBDC. After data submission the JGA team will process the data into databases and archive the original data files. The accepted data types include manufacturer-specific raw data formats from the array-based and new sequencing platforms. The processed data such as the genotype and structural variants or any summary level statistical analyses from the original study authors are stored in databases. The JGA also accepts and distributes any phenotype data associated with the samples. For other human biological data, please contact the NBDC human data ethical committee.
Proper citation: Japanese Genotype-phenotype Archive (JGA) (RRID:SCR_003118) Copy
http://www.genome.gov/Glossary/
Glossary of Genetic Terms to help everyone understand the terms and concepts used in genetic research. In addition to definitions, specialists in the field of genetics share their descriptions of terms, and many terms include images, animation and links to related terms.
Proper citation: Talking Glossary of Genetic Terms (RRID:SCR_003215) Copy
The Charles F. and Joanne Knight Alzheimer Disease Research Center (Knight ADRC) supports researchers and our surrounding community in their pursuit of answers that will lead to improved diagnosis and care for persons with Alzheimer disease (AD). The Center is committed to the long-term goal of finding a way to effectively treat and prevent AD. The Knight ADRC facilitates advanced research on the clinical, genetic, neuropathological, neuroanatomical, biomedical, psychosocial, and neuropsychological aspects of Alzheimer disease, as well as other related brain disorders.
Proper citation: Washington University School of Medicine Knight Alzheimers Disease Research Center (RRID:SCR_000210) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.