Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 176 results
Snippet view Table view Download 176 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_017446

    This resource has 10+ mentions.

https://github.com/flatironinstitute/mountainsort

Neurophysiological spike sorting software.

Proper citation: MountainSort (RRID:SCR_017446) Copy   


http://pdbml.pdb.org/

Markup Language that provides a representation of PDB data in XML format. The description of this format is provided in XML schema of the PDB Exchange Data Dictionary. This schema is produced by direct translation of the mmCIF format PDB Exchange Data Dictionary Other data dictionaries used by the PDB have been electronically translated into XML/XSD schemas and these are also presented in the list below. * PDBML data files are provided in three forms: ** fully marked-up files, ** files without atom records ** files with a more space efficient encoding of atom records * Data files in PDBML format can be downloaded from the RCSB PDB website or by ftp. * Software tools for manipulating PDB data in XML format are available.

Proper citation: Protein Data Bank Markup Language (RRID:SCR_005085) Copy   


  • RRID:SCR_005657

    This resource has 1+ mentions.

http://headit.ucsd.edu

Platform for sharing, download, and re-analysis or meta-analysis of sophisticated, fully annotated, human electrophysiological data sets. It uses EEG Study Schema (ESS) files to provide task, data collection, and subject metadata, including Hierarchical Event Descriptor (HED) tag descriptions of all identified experimental events. Visospatial task data also available from, http://sccn.ucsd.edu/eeglab/data/headit.html: A 238-channel, single-subject EEG data set recorded at the Swartz Center, UCSD, by Arnaud Delorme, Julie Onton, and Scott Makeig is al.

Proper citation: HeadIT (RRID:SCR_005657) Copy   


  • RRID:SCR_006760

    This resource has 1+ mentions.

http://www.ninds.nih.gov/news_and_events/proceedings/20101217-NEXT.htm

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on June 26,2022. A unique clinical trial network open to studies of more than 400 neurological diseases, allowing investigators to more efficiently pursue new therapies based on scientific opportunity. The network has a centralized IRB serving 25 sites, which will allow trials to move faster, without the need to coordinate IRBs at each individual site. It is not necessary to be part of the NeuroNEXT infrastructure to propose and conduct a study within the network. The Network for Excellence in Neuroscience Clinical Trials, or NeuroNEXT, was created to conduct studies of treatments for neurological diseases through partnerships with academia, private foundations, and industry. The network is designed to expand the National Institute of Neurological Disorders and Stroke''s (NINDS) capability to test promising new therapies, increase the efficiency of clinical trials before embarking on larger studies, and respond quickly as new opportunities arise to test promising treatments for people with neurological disorders. The NeuroNEXT program aims to: * Provide a robust, standardized, and accessible infrastructure to facilitate rapid development and implementation of protocols in neurological disorders affecting adult and/or pediatric populations. The network includes multiple Clinical Sites, one Clinical Coordinating Center (CCC) and one Data Coordinating Center (DCC). * Support scientifically sound, possibly biomarker-informed, Phase II clinical trials that provide data for clear go/no-go decisions. * Energize and mobilize federal, industry, foundations and patient advocacy partners by leveraging existing relationships between NINDS and NeuroNEXT to organize high impact Phase II clinical trials for neurological disorders. * Expand the pool of experienced clinical investigators and research staff who are prepared to be leaders of multicenter clinical research trials. * Working with NeuroNEXT is a cooperative venture between NINDS, the NeuroNEXT network and the applicant.

Proper citation: NeuroNEXT (RRID:SCR_006760) Copy   


https://datascience.uth.edu/medcis

NIH funded center to provide system for sharing multimodal epilepsy data for Sudden Unexpected Death in Epilepsy. Modality Epilepsy Data Capture and Integration System (MEDCIS) is cross cohort query interface for SUDEP (Sudden Unexpected Death in EPilepsy) research.

Proper citation: University of Texas Health Science at Houston Center for SUDEP Research (RRID:SCR_024700) Copy   


  • RRID:SCR_003086

    This resource has 1000+ mentions.

http://neuromab.ucdavis.edu/

A national mouse monoclonal antibody generating resource for biochemical and immunohistochemical applications in mammalian brain. NeuroMabs are generated from mice immunized with synthetic and recombinant immunogens corresponding to components of the neuronal proteome as predicted from genomic and other large-scale cloning efforts. Comprehensive biochemical and immunohistochemical analyses of human, primate and non-primate mammalian brain are incorporated into the initial NeuroMab screening procedure. This yields a subset of mouse mAbs that are optimized for use in brain (i.e. NeuroMabs): for immunocytochemical-based imaging studies of protein localization in adult, developing and pathological brain samples, for biochemical analyses of subunit composition and post-translational modifications of native brain proteins, and for proteomic analyses of native brain protein networks. The NeuroMab facility was initially funded with a five-year U24 cooperative grant from NINDS and NIMH. The initial goal of the facility for this funding period is to generate a library of novel NeuroMabs against neuronal proteins, initially focusing on membrane proteins (receptors/channels/transporters), synaptic proteins, other neuronal signaling molecules, and proteins with established links to disease states. The scope of the facility was expanded with supplements from the NIH Blueprint for Neuroscience Research to include neurodevelopmental targets, the NIH Roadmap for Medical Research to include epigenetics targets, and NIH Office of Rare Diseases Research to include rare disease targets. These NeuroMabs will then be produced on a large scale and made available to the neuroscience research community on an inexpensive basis as tissue culture supernatants or purified immunoglobulin by Antibodies Inc. The UC Davis/NIH NeuroMab Facility makes NeuroMabs available directly to end users and is unable to accommodate sales to distributors for third party distribution. Note, NeuroMab antibodies are now offered through antibodiesinc.

Proper citation: NeuroMab (RRID:SCR_003086) Copy   


  • RRID:SCR_007276

    This resource has 10+ mentions.

http://senselab.med.yale.edu

The SenseLab Project is a long-term effort to build integrated, multidisciplinary models of neurons and neural systems. It was founded in 1993 as part of the original Human Brain Project, which began the development of neuroinformatics tools in support of neuroscience research. It is now part of the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF). The SenseLab project involves novel informatics approaches to constructing databases and database tools for collecting and analyzing neuroscience information, using the olfactory system as a model, with extension to other brain systems. SenseLab contains seven related databases that support experimental and theoretical research on the membrane properties: CellPropDB, NeuronDB, ModelDB, ORDB, OdorDB, OdorMapDB, BrainPharmA pilot Web portal that successfully integrates multidisciplinary neurocience data.

Proper citation: SenseLab (RRID:SCR_007276) Copy   


http://kimlab.io/brain-map/atlas/

Website to visualize and share anatomical labels. Franklin and Paxinos (FP) based anatomical labels in Allen Common Coordinate Framework (CCF). Cell type specific transgenic mice and MRI atlas were used to adjust and further segment labels. New segmentations were created in dorsal striatum using cortico-striatal connectivity data. Anatomical labels were digitized based on Allen ontology, and web-interface was created for easy visualization. These labels provide resource to isolate and identify mouse brain anatomical structures. Open source data sharing will facilitate further refinement of anatomical labels and integration of data interpretation within single anatomical platform.

Proper citation: Enhanced and Unified Anatomical Labeling for Common Mouse Brain Atlas (RRID:SCR_019267) Copy   


  • RRID:SCR_004520

    This resource has 1+ mentions.

http://ccr.coriell.org/Sections/Collections/NINDS/?SsId=10

Open resource of biological samples (DNA, cell lines, and other biospecimens) and corresponding phenotypic data to promote neurological research. Samples from more than 34,000 unique individuals with cerebrovascular disease, dystonia, epilepsy, Huntington's Disease, motor neuron disease, Parkinsonism, and Tourette Syndrome, as well as controls (population control and unaffected relatives) have been collected. The mission of the NINDS Repository is to provide 1) genetics support for scientists investigating pathogenesis in the central and peripheral nervous systems through submissions and distribution; 2) information support for patients, families, and advocates concerned with the living-side of neurological disease and stroke.

Proper citation: NINDS Repository (RRID:SCR_004520) Copy   


  • RRID:SCR_023031

https://www.gaitor.org

Software suite to analyse gait trials collected with Experimental Dynamic Gait Arena for Rodents. Used for rodent gait analysis.

Proper citation: GAITOR Suite (RRID:SCR_023031) Copy   


  • RRID:SCR_023293

    This resource has 100+ mentions.

https://cells.ucsc.edu/

Web based tool to visualize gene expression and metadata annotation distribution throughout single cell dataset or multiple datasets. Interactive viewer for single cell expression. You can click on and hover over cells to get meta information, search for genes to color on and click clusters to show cluster specific marker genes.

Proper citation: UCSC Cell Browser (RRID:SCR_023293) Copy   


http://senselab.med.yale.edu/odormapdb

OdorMapDB is designed to be a database to support the experimental analysis of the molecular and functional organization of the olfactory bulb and its basis for the perception of smell. It is primarily concerned with archiving, searching and analyzing maps of the olfactory bulb generated by different methods. The first aim is to facilitate comparison of activity patterns elicited by odor stimulation in the glomerular layer obtained by different methods in different species. It is further aimed at facilitating comparison of these maps with molecular maps of the projections of olfactory receptor neuron subsets to different glomeruli, especially for gene targeted animals and for antibody staining. The main maps archived here are based on original studies using 2-deoxyglucose and on current studies using high resolution fMRI in mouse and rat. Links are also provided to sites containing maps by other laboratories. OdorMapDB thus serves as a nodal point in a multilaboratory effort to construct consensus maps integrating data from different methodological approaches. OdorMapDB is integrated with two other databases in SenseLab: ORDB, a database of olfactory receptor genes and proteins, and OdorDB, a database of odor molecules that serve as ligands for the olfactory receptor proteins. The combined use of the three integrated databases allows the user to identify odor ligands that activate olfactory receptors that project to specific glomeruli that are involved in generating the odor activity maps.

Proper citation: Olfactory Bulb Odor Map DataBase (OdorMapDB) (RRID:SCR_007287) Copy   


  • RRID:SCR_008712

    This resource has 1+ mentions.

http://www.stanford.edu/group/exonarray/cgi-bin/plot_selector.pl

Transcriptome database of acutely isolated purified astrocytes, neurons, and oligodendrocytes. Provides improved cell-type-specific markers for better understanding of neural development, function, and disease.

Proper citation: Exon Array Browser (RRID:SCR_008712) Copy   


  • RRID:SCR_022795

https://cloudreg.neurodata.io/

Software automated, terascale, cloud based image analysis pipeline for preprocessing and cross modal, nonlinear registration between volumetric datasets with artifacts. Automatic terabyte scale cross modal brain volume registration.

Proper citation: CloudReg (RRID:SCR_022795) Copy   


  • RRID:SCR_024480

https://github.com/danbider/lightning-pose

Software video centric package for direct video manipulation. Semi supervised animal pose estimation algorithm, Bayesian post processing approach and deep learning package. Improved animal pose estimation via semi-supervised learning, Bayesian ensembling, and cloud-native open-source tools.

Proper citation: Lightning Pose (RRID:SCR_024480) Copy   


  • RRID:SCR_002569

    This resource has 1+ mentions.

http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases

3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.

Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy   


  • RRID:SCR_002884

    This resource has 1+ mentions.

http://www.gensat.org/retina.jsp

Collection of images from cell type-specific protein expression in retina using BAC transgenic mice. Images from cell type-specific protein expression in retina using BAC transgenic mice from GENSAT project.

Proper citation: Retina Project (RRID:SCR_002884) Copy   


http://zebrafinch.brainarchitecture.org/

Atlas of high resolution Nissl stained digital images of the brain of the zebra finch, the mainstay of songbird research. The cytoarchitectural high resolution photographs and atlas presented here aim at facilitating electrode placement, connectional studies, and cytoarchitectonic analysis. This initial atlas is not in stereotaxic coordinate space. It is intended to complement the stereotaxic atlases of Akutegawa and Konishi, and that of Nixdorf and Bischof. (Akutagawa E. and Konishi M., stereotaxic atalas of the brain of zebra finch, unpublished. and Nixdorf-Bergweiler B. E. and Bischof H. J., A Stereotaxic Atlas of the Brain Of the Zebra Finch, Taeniopygia Guttata, http://www.ncbi.nlm.nih.gov.) The zebra finch has proven to be the most widely used model organism for the study of the neurological and behavioral development of birdsong. A unique strength of this research area is its integrative nature, encompassing field studies and ethologically grounded behavioral biology, as well as neurophysiological and molecular levels of analysis. The availability of dimensionally accurate and detailed atlases and photographs of the brain of male and female animals, as well as of the brain during development, can be expected to play an important role in this research program. Traditionally, atlases for the zebra finch brain have only been available in printed format, with the limitation of low image resolution of the cell stained sections. The advantages of a digital atlas over a traditional paper-based atlas are three-fold. * The digital atlas can be viewed at multiple resolutions. At low magnification, it provides an overview of brain sections and regions, while at higher magnification, it shows exquisite details of the cytoarchitectural structure. * It allows digital re-slicing of the brain. The original photographs of brain were taken in certain selected planes of section. However, the brains are seldom sliced in exactly the same plane in real experiments. Re-slicing provides a useful atlas in user-chosen planes, which are otherwise unavailable in the paper-based version. * It can be made available on the internet. High resolution histological datasets can be independently evaluated in light of new experimental anatomical, physiological and molecular studies.

Proper citation: Zebrafinch Brain Architecture Project (RRID:SCR_004277) Copy   


http://www.tbi-impact.org/?p=impact%2Fcalc&btn_calc=GO+TO+CALCULATOR

A calculator that calculates the prediction models for 6 month outcome after Traumatic Brain Injury. Based on extensive prognostic analysis the IMPACT investigators have developed prognostic models for predicting 6 month outcome in adult patients with moderate to severe head injury (Glasgow Coma Scale <=12) on admission. By entering the characteristics into the calculator, the models will provide an estimate of the expected outcome at 6 months. We present three models of increasing complexity (Core, Core + CT, Core + CT + Lab). These models were developed and validated in collaboration with the CRASH trial collaborators on large numbers of individual patient data (the IMPACT database). The models discriminate well, and are particularly suited for purposes of classification and characterization of large cohorts of patients. Extreme caution is required when applying the estimated prognosis to individual patients. The sequential prediction models may be used as an aid to estimate 6 month outcome in patients with severe or moderate traumatic brain injury (TBI). However, the prediction rule can only complement, never replace, clinical judgment and can therefore be used only as a decision-support system.

Proper citation: IMPACT Prognostic Calculator (RRID:SCR_004730) Copy   


http://www.lajollaneuroscience.org/

Our NINDS Center Core Grant supports centralized resources and facilities shared by investigators with existing NINDS-funded research projects. Our Center is composed of three research cores, each of which will enrich the effectiveness of ongoing research, and promote new research directions. The three Core facilities support Electrophysiology, Neuropathology / Histology, and High-Throughput/High-Content Chemical and Genomic Library screening. By making these important Core Services available to the local Neuroscience community, the La Jolla Neurosciences Program hopes to promote the study of how the nervous system works and develop treatments for nervous system diseases. The cores and their services are available to La Jolla neuroscientists. Core services are available to NINDS-supported neuroscience projects from local investigators as well as young neuroscientists prior to obtaining their first NIH-funded grant. * Electrophysiology: SBMRI Electrophysiology ** The Electrophysiology Core consists of the Sanford-Burnham Electrophysiology Facility. This facility can perform patch-clamp intracellular and extracellular field recordings on a range of material including cultured cells and brain slices. The Sanford-Burnham facility emphasizes electrophysiological analysis of cultured cells and the detailed electrical properties of channels, receptors and recombinant proteins expressed in Xenopus oocytes or mammalian cells. * Neuropathology: UCSD Neuropathology ** The Neuropathology laboratory applies immunocytochemistry, neurochemistry, molecular genetics, transgenic models of disease, and imaging by scanning laser confocal microscopy to analysis of neurological disease in animal models. * Chemical Library Screening: SBIMR Assay Development, SBIMR Chemical Library Screening, SBIMR Cheminformatics, SBIMR High-content Screening ** The Chemical Library Screening core offers high-throughput screening (HTS) of biochemical and cell-based array using traditional HTS readouts and automated microscopy for high-content screening (HCS)> These facilities also offer array development and screening, as well as cheminformatics and medicinal chemistry., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on January 15,2026.

Proper citation: La Jolla Interdisciplinary Neurosciences Center (RRID:SCR_002772) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X