Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Project aims to change anatomy atlas by building atlases through open data, community based collaborative development, and free distribution of medical knowledge. Provides access to several 2D and 3D browser based tools.
Proper citation: Open Anatomy Project (RRID:SCR_022141) Copy
http://www.nitrc.org/projects/tumorsim/
Simulation software that generates pathological ground truth from a healthy ground truth. The software requires an input directory that describes a healthy anatomy (anatomical probabilities, mesh, diffusion tensor image, etc) and then outputs simulation images.
Proper citation: TumorSim (RRID:SCR_002604) Copy
http://www.med.unc.edu/bric/ideagroup/free-softwares/unc-infant-0-1-2-atlases
3 atlases dedicated for neonates, 1-year-olds, and 2-year-olds. Each atlas comprises a set of 3D images made up of the intensity model, tissue probability maps, and anatomical parcellation map. These atlases are constructed with the help of state-of-the-art infant MR segmentation and groupwise registration methods, on a set of longitudinal images acquired from 95 normal infants (56 males and 39 females) at neonate, 1-year-old, and 2-year-old.
Proper citation: UNC Infant 0-1-2 Atlases (RRID:SCR_002569) Copy
https://github.com/QTIM-Lab/DeepNeuro
Software Python package for neuroimaging data. Framework to design and train neural network architectures. Used in medical imaging community to ensure consistent performance of networks across variable users, institutions, and scanners.
Proper citation: DeepNeuro (RRID:SCR_016911) Copy
https://yeatmanlab.github.io/pyAFQ/
Software package focused on automated delineation of major fiber tracts in individual human brains, and quantification of tissue properties within the tracts.Software for automated processing and analysis of diffusion MRI data. Automates tractometry.
Proper citation: Automated Fiber Quantification in Python (RRID:SCR_023366) Copy
http://code.google.com/p/annotare/
A software tool for annotating biomedical investigations and the resulting data, then producing a MAGE-TAB file. This software is a standalone desktop which features: an editor function, an annotation modifier, incorporation of terms from biomedical ontologies, standard templates for common experiment types, a design aid to help create a new document, and a validator that checks for syntactic and semantic violations.
Proper citation: Annotare (RRID:SCR_000319) Copy
http://www.fmri.wfubmc.edu/cms/software
Research group based in the Department of Radiology of Wake Forest University School of Medicine devoted to the application of novel image analysis methods to research studies. The ANSIR lab also maintains a fully-automated functional and structural image processing pipeline supporting the image storage and analysis needs of a variety of scientists and imaging studies at Wake Forest. Software packages and toolkits are currently available for download from the ANSIR Laboratory, including: WFU Biological Parametric Mapping Toolbox, WFU_PickAtlas, and Adaptive Staircase Procedure for E-Prime.
Proper citation: Advanced Neuroscience Imaging Research Laboratory Software Packages (RRID:SCR_002926) Copy
http://imaging.indyrad.iupui.edu/projects/SPHARM/
A matlab-based 3D shape modeling and analysis toolkit, and is designed to aid statistical shape analysis for identifying morphometric changes in 3D structures of interest related to different conditions. SPHARM-MAT is implemented based on a powerful 3D Fourier surface representation method called SPHARM, which creates parametric surface models using spherical harmonics.
Proper citation: SPHARM-MAT (RRID:SCR_002545) Copy
http://www.civm.duhs.duke.edu/neuro2012ratatlas/
Multidimensional atlas of the adult Wistar rat brain based on magnetic resonance histology (MRH). The atlas has been carefully aligned with the widely used Paxinos-Watson atlas based on optical sections to allow comparisons between histochemical and immuno-marker data, and the use of the Paxinos-Watson abbreviation set. Our MR atlas attempts to make a seamless connection with the advantageous features of the Paxinos-Watson atlas, and to extend the utility of the data through the unique capabilities of MR histology: a) ability to view the brain in the skull with limited distortion from shrinkage or sectioning; b) isotropic spatial resolution, which permits sectioning along any arbitrary axis without loss of detail; c) three-dimensional (3D) images preserving spatial relationships; and d) widely varied contrast dependent on the unique properties of water protons. 3D diffusion tensor images (DTI) at what we believe to be the highest resolution ever attained in the rat provide unique insight into white matter structures and connectivity. The 3D isotropic data allow registration of multiple data sets into a common reference space to provide average atlases not possible with conventional histology. The resulting multidimensional atlas that combines Paxinos-Watson with multidimensional MRH images from multiple specimens provides a new, comprehensive view of the neuroanatomy of the rat and offers a collaborative platform for future rat brain studies. To access the atlas, click view supplementary materials in CIVMSpace at the bottom of the following webpage.
Proper citation: Adult Wistar Rat Atlas (RRID:SCR_006288) Copy
https://neuron.yale.edu/neuron/
Software for computational neurophysiology. Simulation environment is used for building and using computational models of neurons and networks of neurons. NEURON Users Group can participate in collaborative development of documentation, tutorials, and software.
Proper citation: NEURON (RRID:SCR_017449) Copy
https://kimlab.io/brain-map/DevCCF/
Open access multimodal 3D atlases of developing mouse brain that can be used to integrate mouse brain imaging data for visualization, education, cell census mapping, and more. Atlas ages include E11.5, E13.5, E15.5, E18.5, P4, P14, and P56. Web platform can be utilized to visualize and explore the atlas in 3D. Downloadable atlas can be used to align multimodal mouse brain data. Morphologically averaged symmetric template brains serve as the basis reference space and coordinate system. Anatomical labels are manually drawn in 3D based on the prosomeric model. For additional references, the P56 template includes templates and annotations from the aligned Allen Mouse Brain Common Coordinate Framework (Allen CCFv3) and aligned Molecular Atlas of the Adult Mouse Brain.
Proper citation: 3D Developmental Mouse Brain Common Coordinate Framework (RRID:SCR_025544) Copy
http://www.bmu.psychiatry.cam.ac.uk/software/
Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.
Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy
https://ida.loni.usc.edu/login.jsp
Archive used for archiving, searching, sharing, tracking and disseminating neuroimaging and related clinical data. IDA is utilized for dozens of neuroimaging research projects across North America and Europe and accommodates MRI, PET, MRA, DTI and other imaging modalities.
Proper citation: LONI Image and Data Archive (RRID:SCR_007283) Copy
http://nsr.bioeng.washington.edu/
Database of physiological, pharmacological, and pathological information on humans and other organisms and integration through computational modeling. Models include everything from diagrammatic schema, suggesting relationships among elements composing a system, to fully quantitative, computational models describing the behavior of physiological systems and an organism''s response to environmental change. Each mathematical model is an internally self-consistent summary of available information, and thereby defines a working hypothesis about how a system operates. Predictions from such models are subject to test, with new results leading to new models.BR /> A Tool developed for the NSR Physiome project is JSim, an open source, free software. JSim is a Java-based simulation system for building quantitative numeric models and analyzing them with respect to experimental reference data. JSim''s primary focus is in physiology and biomedicine, however its computational engine is quite general and applicable to a wide range of scientific domains. JSim models may intermix ODEs, PDEs, implicit equations, integrals, summations, discrete events and procedural code as appropriate. JSim''s model compiler can automatically insert conversion factors for compatible physical units as well as detect and reject unit unbalanced equations. JSim also imports the SBML and CellML model archival formats. All JSim models are open source. Goals of the Physiome Project: - To develop and database observations of physiological phenomenon and interpret these in terms of mechanism (a fundamentally reductionist goal). - To integrate experimental information into quantitative descriptions of the functioning of humans and other organisms (modern integrative biology glued together via modeling). - To disseminate experimental data and integrative models for teaching and research. - To foster collaboration amongst investigators worldwide, to speed up the discovery of how biological systems work. - To determine the most effective targets (molecules or systems) for therapy, either pharmaceutic or genomic. - To provide information for the design of tissue-engineered, biocompatible implants.
Proper citation: NSR Physiome Project (RRID:SCR_007379) Copy
Knowledge management system designed to handle neurobiological information at different levels of organization of vertebrate nervous system. Database and repository for information about neural circuitry, storing and analyzing data concerned with nomenclature, taxonomy, axonal connections, and neuronal cell types. Handles data and metadata collated from original literature, or inserted by scientists that is associated to four levels of organization of vertebrate nervous system. Data about expressed molecules, neuron types and classes, brain regions, and networks of brain regions.
Proper citation: Brain Architecture Management System (RRID:SCR_007251) Copy
http://www.loni.usc.edu/Software/jViewbox
A portable software framework for medical imaging research. jViewbox consists of a set of Java classes organized under a simple but extensive API that provides the core functionality of 2D image presentation needed by most imaging applications. It follows Java's Swing model closely to make it easy for application developers to build GUIs where end users can use various tools in a tool bar to manipulate the image displays. No optional add-ons or native code is used, which makes jViewBox compatible with any standard Java 2 Runtime Environment (version 1.3 or later).
Proper citation: jViewbox (RRID:SCR_008274) Copy
A web-based neuroimaging and neuropsychology software suite that offers versatile, automatable data upload/import/entry options, rapid and secure sharing of data among PIs, querying and export all data, real-time reporting, and HIPAA and IRB compliant study-management tools suitable to large institutions as well as smaller scale neuroscience and neuropsychology researchers. COINS manages over over 400 studies, more than 265,000 clinical neuropsychological assessments, and 26,000 MRI, EEG, and MEG scan sessions collected from 18,000 participants at over ten institutions on topics related to the brain and behavior. As neuroimaging research continues to grow, dynamic neuroinformatics systems are necessary to store, retrieve, mine and share the massive amounts of data. The Collaborative Informatics and Neuroimaging Suite (COINS) has been created to facilitate communication and cultivate a data community. This tool suite offers versatile data upload/import/entry options, rapid and secure sharing of data among PIs, querying of data types and assessments, real-time reporting, and study-management tools suitable to large institutions as well as smaller scale researchers. It manages studies and their data at the Mind Research Network, the Nathan Kline Institute, University of Colorado Boulder, the Olin Neuropsychiatry Research Center (at) Hartford Hospital, and others. COINS is dynamic and evolves as the neuroimaging field grows. COINS consists of the following collaboration-centric tools: * Subject and Study Management: MICIS (Medical Imaging Computer Information System) is a centralized PostgreSQL-based web application that implements best practices for participant enrollment and management. Research site administrators can easily create and manage studies, as well as generate reports useful for reporting to funding agencies. * Scan Data Collection: An automated DICOM receiver collects, archives, and imports imaging data into the file system and COINS, requiring no user intervention. The database also offers scan annotation and behavioral data management, radiology review event reports, and scan time billing. * Assessment Data Collection: Clinical data gathered from interviews, questionnaires, and neuropsychological tests are entered into COINS through the web application called Assessment Manager (ASMT). ASMT's intuitive design allows users to start data collection with little or no training. ASMT offers several options for data collection/entry: dual data entry, for paper assessments, the Participant Portal, an online tool that allows subjects to fill out questionnaires, and Tablet entry, an offline data entry tool. * Data Sharing: De-identified neuroimaging datasets with associated clinical-data, cognitive-data, and associated meta-data are available through the COINS Data Exchange tool. The Data Exchange is an interface that allows investigators to request and share data. It also tracks data requests and keeps an inventory of data that has already been shared between users. Once requests for data have been approved, investigators can download the data directly from COINS.
Proper citation: Mind Research Network - COINS (RRID:SCR_000805) Copy
Collection of dissemination and exchange recorded biomedical signals and open-source software for analyzing them. Provides facilities for cooperative analysis of data and evaluation of proposed new algorithm. Providies free electronic access to PhysioBank data and PhysioToolkit software. Offers service and training via on-line tutorials to assist users at entry and more advanced levels. In cooperation with annual Computing in Cardiology conference, PhysioNet hosts series of challenges, in which researchers and students address unsolved problems of clinical or basic scientific interest using data and software provided by PhysioNet. All data included in PhysioBank, and all software included in PhysioToolkit, are carefully reviewed. Researchers are further invited to contribute data and software for review and possible inclusion in PhysioBank and PhysioToolkit. Please review guidelines before submitting material.
Proper citation: PhysioNet (RRID:SCR_007345) Copy
http://www.radiology.ucsf.edu/cind
Biomedical technology research center that develops and validates new imaging methods for detecting brain abnormalities in neurodegenerative diseases, including Alzheimer's disease, vascular dementia, frontotemporal dementia, Parkinson's disease, as well as epilepsy, depression, and other conditions associated with nerve loss in the brain. As people around the globe live longer, the impact of neurodegenerative diseases is expected to increase further with dire social and economical consequences for societies if no effective treatments are developed soon. The development at CIND is aimed to improve magnetic resonance imaging (MRI). The ultimate goal of the scientific program is to identify imaging markers that improve accuracy in diagnosing neurodegenerative diseases at early stages, achieve more reliable prognoses of disease progression, and facilitate the discovery of effective treatment interventions. In addition to addressing the general needs for studying neurodegenerative diseases, another focus of CIND concerns brain diseases associated with military service and war combat, such as post traumatic stress disorder (PTSD), brain trauma, gulf war illness and the long-term effects of these conditions on the mental health of veterans. The symbiosis between CIND and the Veterans Administration Medical Center in San Francisco makes this program uniquely suited to serve military veterans.
Proper citation: Center for Imaging of Neurodegenerative Diseases (RRID:SCR_001968) Copy
http://icatb.sourceforge.net/fusion/fusion_startup.php
A MATLAB toolbox which implements the joint Independent Component Analysis (ICA), parallel ICA and CCA with joint ICA methods. It is used to to extract the shared information across modalities like fMRI, EEG, sMRI and SNP data. * Environment: Win32 (MS Windows), Gnome, KDE * Operating System: MacOS, Windows, Linux * Programming Language: MATLAB * Supported Data Format: ANALYZE, NIfTI-1
Proper citation: Fusion ICA Toolbox (RRID:SCR_003494) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.