Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 284 results
Snippet view Table view Download 284 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002166

    This resource has 10+ mentions.

http://www.nitrc.org/projects/voxbo

Software package for brain image manipulation and analysis, focusing on fMRI and lesion analysis. VoxBo can be used independently or in conjunction with other packages. It provides GLM-based statistical tools, an architecture for interoperability with other tools (they encourage users to incorporate SPM and FSL into their processing pipelines), an automation system, a system for parallel distributed computing, numerous stand-alone tools, decent wiki-based documentation, and lots more.

Proper citation: VoxBo (RRID:SCR_002166) Copy   


http://hopkinsneuro.org/research/jhu_nimh/

The Johns Hopkins NIMH Center is comprised of an interdisciplinary research team who has pooled their talents to study the nature of HIV-associated neurocognitive disorders (HAND). Their aim is to translate discoveries of the pathophysiological mechanisms into novel therapeutics for HAND. Objectives * To integrate aspects of ongoing research in HAND and SIV encephalitis * Develop high-throughput and screening assays for identifying novel therapeutic compounds * Use proteomics and lipidomics approaches to indentifying surrogate markers of disease activity * Disseminate information and education about HAND through existing and new educational systems, including the JHU AIDS Education Training Center and the JHU Center for Global Clinical Education * Facilitate the entry of new investigators into Neuro-AIDS research, and to catalyze new areas of research, particularly where relevant for drug discovery or the development of validated surrogate markers

Proper citation: Johns Hopkins NIMH Research Center Novel Therapeutics of HIV-associated Cognitive Disorders (RRID:SCR_001891) Copy   


http://gara.bio.uci.edu

THIS RESOURCE IS NO LONGER IN SERVICE, documented on April 24, 2017. Database of images depicting the spatial distribution of 2-deoxyglucose uptake evoked in the glomerular layer of the rat olfactory bulb in response to a wide range of defined odorant stimuli. A number of different display and comparison tools are provided allowing patterns to be viewed from different perspectives, and descriptions of the methods and interpretations of these data are provided. Some of the more advanced tools require you to download software.

Proper citation: Glomerular Activity Response Archive (RRID:SCR_002089) Copy   


https://github.com/ReproBrainChart

Open data resource for mapping brain development and its associations with mental health. Integrates data from 5 large studies of brain development in youth from three continents (N = 6,346). Bifactor models were used to create harmonized psychiatric phenotypes, capturing major dimensions of psychopathology. Neuroimaging data were carefully curated and processed using consistent pipelines in a reproducible manner.

Proper citation: Reproducible Brain Charts (RRID:SCR_027837) Copy   


  • RRID:SCR_027836

https://doi.org/10.17605/OSF.IO/WDR78

Open source resource of manually curated and expert reviewed infant brain segmentations hosted on OpenNeuro.org. and OSF.io. Anatomical MRI data was segmented from 71 infant imaging visits across 51 participants, using both T1w and T2w images per visit. Images showed dramatic differences in myelination and intensities across 1–9 months, emphasizing the need for densely sampled gold-standard segmentations across early life. This dataset provides a benchmark for evaluating and improving pipelines dependent upon segmentations in the youngest populations. As such, this dataset provides a vitally needed foundation for early-life large-scale studies such as HBCD.

Proper citation: Baby Open Brains (RRID:SCR_027836) Copy   


https://trialweb.dcri.duke.edu/tads/index.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on August 16,2023. Multi-site clinical research study examining the short- and long-term effectiveness of an antidepressant medication and psychotherapy alone and in combination for treating depression in adolescents ages 12 to 17. For teens treated in TADS, the trial is designed to provide best-practice practical care for depression.

Proper citation: TADS - Treatment for Adolescents with Depression Study (RRID:SCR_000037) Copy   


https://resource.loni.usc.edu/resources/atlases/

Probabilistic reference system for human brain, including tools to establish this reference system for structural and functional anatomy on both macroscopic (in vivo) and microscopic (post mortem) levels. Project has expanded neuroinformatics tools for data sharing and created Conforming Site System that allows laboratories worldwide to contribute data to evolving atlas. Through implementation of ICBM data sharing policy space, they are fostering data exchange while still providing for scientific credit assignment and subject confidentiality.ICBM atlas collection consists of ICBM Template, tool developed to provide reference that includes both set of coordinates and associated anatomical labels; the ICBM 452 T1 atlas, average of T1-weighted MRIs of normal young adult brains, ICBM probabilistic atlases, and Cytoarchitectonic Atlas. ICBM Subject Database is web-based database infrastructure that simplifies image dataset collection, organization and dissemination. Authorized users may view representations of data and form collections of datasets that can be downloaded or fed directly into Pipeline environment for distributed processing and analysis.

Proper citation: International Consortium for Brain Mapping (RRID:SCR_000445) Copy   


http://cbrain.mcgill.ca/loris

A modular and extensible web-based data management system that integrates all aspects of a multi-center study, from heterogeneous data acquisition to storage, processing and ultimately dissemination, within a streamlined platform. Through a standard web browser, users are able to perform a wide variety of tasks, such as data entry, 3D image visualization and data querying. LORIS also stores data independently from any image processing pipeline, such that data can be processed by external image analysis software tools. LORIS provides a secure web-based and database-driven infrastructure to automate the flow of clinical data for complex multi-site neuroimaging trials and studies providing researchers with the ability to easily store, link, and access significant quantities of both scalar (clinical, psychological, genomic) and multi-dimensional (imaging) data. LORIS can collect behavioral, neurological, and imaging data, including anatomical and functional 3D/4D MRI models, atlases and maps. LORIS also functions as a project monitoring and auditing platform to oversee data acquisition across multiple study sites. Confidentiality during multi-site data sharing is provided by the Subject Profile Management System, which can perform automatic removal of confidential personal information and multiple real-time quality control checks. Additionally, web interactions with the LORIS portal take place over an encrypted channel via SSL, ensuring data security. Additional features such as Double Data Entry and Statistics and Data Query GUI are included.

Proper citation: LORIS - Longitudinal Online Research and Imaging System (RRID:SCR_000590) Copy   


http://fantom.gsc.riken.jp/

International collaborative research project and database of annotated mammalian genome. Used to improve estimates of total number of genes and their alternative transcript isoforms in both human and mouse. Consortium to assign functional annotations to full length cDNAs that were collected during Mouse Encyclopedia Project at RIKEN.

Proper citation: Functional Annotation of the Mammalian Genome (RRID:SCR_000788) Copy   


  • RRID:SCR_004283

    This resource has 10+ mentions.

http://brainarchitecture.org/

Evolving portal that will provide interactive tools and resources to allow researchers, clinicians, and students to discover, analyze, and visualize what is known about the brain's organization, and what the evidence is for that knowledge. This project has a current experimental focus: creating the first brainwide mesoscopic connectivity diagram in the mouse. Related efforts for the human brain currently focus on literature mining and an Online Brain Atlas Reconciliation Tool. The primary goal of the Brain Architecture Project is to assemble available knowledge about the structure of the nervous system, with an ultimate emphasis on the human CNS. Such information is currently scattered in research articles, textbooks, electronic databases and datasets, and even as samples on laboratory shelves. Pooling the knowledge across these heterogeneous materials - even simply getting to know what we know - is a complex challenge that requires an interdisciplinary approach and the contributions and support of the greater community. Their approach can be divided into 4 major thrusts: * Literature Curation and Text Mining * Computational Analysis * Resource Development * Experimental Efforts

Proper citation: Brain Architecture Project (RRID:SCR_004283) Copy   


http://yogo.msu.montana.edu/

A set of software tools created to rapidly build scientific data-management applications. These applications will enhance the process of data annotation, analysis, and web publication. The system provides a set of easy-to-use software tools for data sharing by the scientific community. It enables researchers to build their own custom-designed data management systems. The problem of scientific data management rests on several challenges. These include flexible data storage, a way to share the stored data, tools to curate the data, and history of the data to show provenance. The Yogo Framework gives you the ability to build scientific data management applications that address all of these challenges. The Yogo software is being developed as part of the NeuroSys project. All tools created as part of the Yogo Data Management Framework are open source and released under an OSI approved license.

Proper citation: Yogo Data Management System (RRID:SCR_004239) Copy   


http://www.brainarchitecture.org/mouse-home

An atlas project whose goal is to enerate brainwide maps of inter-regional neural connectivity that specify the inputs and outputs of every brain region, at a "mesoscopic" level of analysis. A 3D injection viewer is used to view the mouse brain. To determine the outputs of a brain region, anterograde tracers are used which are taken up by neurons locally ("the input"), then transported actively down the axons to the "output regions." The whole brain is then sliced thinly, and each slice is digitally imaged. These 2-D images are reconstructed in 3D. The majority of the resulting 3-D brain image is unlabeled. Only the injected region and its output regions have tracer in them, allowing for identification of this small fraction of the connectivity map. This procedure is repeated identically, to account for individual variability. To determine the inputs to the same brain region as above, a retrograde tracer is injected in the same stereotaxic location ("the input"), and the process is repeated. In order to accumulate data from different mice (each of whom has a slightly different brain shape and size), 3-D spatial normalization is performed using registration algorithms. These gigapixel images of whole-brain sections can be zoomed to show individual neurons and their processes, providing a "virtual microscope." Each sampled brain is represented in about 500 images, each image showing an optical section through a 20 micron-thick slice of brain tissue. A multi-resolution viewer permits users to journey through each brain, following the pathways taken through three-dimensional brain space by tracer-labeled neuronal pathways. A key point is that at the mid-range "mesoscopic" scale, the team expects to assemble a picture of connections that are stereotypical and probably genetically determined in a species-specific manner. By dividing the volume of a hemisphere of the mouse brain into 250 equidistant, predefined grid-points, and administering four different kinds of tracer injections at each grid point -- in different animals of the same sex and age a complete wiring diagram that will be stitched together in "shotgun" fashion from the full dataset.

Proper citation: Mouse Brain Architecture Project (RRID:SCR_004683) Copy   


https://www.med.unc.edu/pgc/

Consortium conducting meta-analyses of genome-wide genetic data for psychiatric disease. Focused on autism, attention-deficit hyperactivity disorder, bipolar disorder, major depressive disorder, schizophrenia, anorexia nervosa (AN), Tourette syndrome (TS), and obsessive-compulsive disorder (OCD). Used to investigate common single nucleotide polymorphisms (SNPs) genotyped on commercial arrays, structural variation (copy number variation) and uncommon or rare genetic variation. To participate you are asked to upload data from your study to central computer used by this consortium. Genetic Cluster Computer serves as data warehouse and analytical platform for this study . When data from your study have been incorporated, account will be provided on central server and access to all GWAS genotypes, phenotypes, and meta-analytic results relevant to deposited data and participation aims. NHGRI GWAS Catalog contains updated information about all GWAS in biomedicine, and is usually excellent starting point to find comprehensive list of studies. Files can be obtained by any PGC member for any disease to which they contributed data. These files can also be obtained by application to NIMH Genetics Repository. Individual-level genotype and phenotype data requires application, material transfer agreement, and informed consent consideration. Some datasets are also in controlled-access dbGaP and Wellcome Trust Case-Control Consortium repositories. PGC members can also receive back cleaned and imputed data and results for samples they contributed to PGC analyses.

Proper citation: Psychiatric Genomics Consortium (RRID:SCR_004495) Copy   


  • RRID:SCR_005031

    This resource has 100+ mentions.

http://openneuro.org

Open platform for analyzing and sharing neuroimaging data from human brain imaging research studies. Brain Imaging Data Structure ( BIDS) compliant database. Formerly known as OpenfMRI. Data archives to hold magnetic resonance imaging data. Platform for sharing MRI, MEG, EEG, iEEG, and ECoG data.

Proper citation: OpenNeuro (RRID:SCR_005031) Copy   


  • RRID:SCR_005606

http://www.nimh.nih.gov/educational-resources/brain-basics/brain-basics.shtml

Brain Basics provides information on how the brain works, how mental illnesses are disorders of the brain, and ongoing research that helps us better understand and treat disorders. Mental disorders are common. You may have a friend, colleague, or relative with a mental disorder, or perhaps you have experienced one yourself at some point. Such disorders include depression, anxiety disorders, bipolar disorder, attention deficit hyperactivity disorder (ADHD), and many others. Some people who develop a mental illness may recover completely; others may have repeated episodes of illness with relatively stable periods in between. Still others live with symptoms of mental illness every day. They can be moderate, or serious and cause severe disability. Through research, we know that mental disorders are brain disorders. Evidence shows that they can be related to changes in the anatomy, physiology, and chemistry of the nervous system. When the brain cannot effectively coordinate the billions of cells in the body, the results can affect many aspects of life. Scientists are continually learning more about how the brain grows and works in healthy people, and how normal brain development and function can go awry, leading to mental illnesses. Brain Basics will introduce you to some of this science, such as: * How the brain develops * How genes and the environment affect the brain * The basic structure of the brain * How different parts of the brain communicate and work with each other * How changes in the brain can lead to mental disorders, such as depression.

Proper citation: Brain Basics (RRID:SCR_005606) Copy   


  • RRID:SCR_005657

    This resource has 1+ mentions.

http://headit.ucsd.edu

Platform for sharing, download, and re-analysis or meta-analysis of sophisticated, fully annotated, human electrophysiological data sets. It uses EEG Study Schema (ESS) files to provide task, data collection, and subject metadata, including Hierarchical Event Descriptor (HED) tag descriptions of all identified experimental events. Visospatial task data also available from, http://sccn.ucsd.edu/eeglab/data/headit.html: A 238-channel, single-subject EEG data set recorded at the Swartz Center, UCSD, by Arnaud Delorme, Julie Onton, and Scott Makeig is al.

Proper citation: HeadIT (RRID:SCR_005657) Copy   


  • RRID:SCR_006821

    This resource has 1+ mentions.

http://dally.nimh.nih.gov/matoff/matoff.html

An interactive analysis program that searches neurophysiological data and plots the results. MatOFF was developed especially for dealing with the complexities common to behavioral neurophysiological experiments. It runs under Windows 2000 or XP and relies on MATLAB version R11.1 (or above) for all operations. MatOFF searches a data file to locate and plot epochs (trials) of special interest to the investigator. Appropriate input data files have time-stamped event codes, usually including neuron action potential firing events (spikes), and digitized analog data. The user specifies a list of event code numbers that uniquely identify a sequence of events. MatOFF uses this sequence to search the raw data file, select the epochs that meet the criteria, time-shift the trials to align them on a common event, order the epochs based on user-selected criteria, and plot the results based on a collection of page formatting specifications. MatOFF will also save extracted data and some statistics to disk. Features: * Powerful, interactive searching tools for locating relevant experimental events * Compatible with Cortex data acquisition program * Compatible with Plexon data acquisition system * Flexible, publication-quality graphical display and printing * Comprehensive scripting language * Supports learning and other dynamic behavior * Integrated interface to MATLAB functions * Automatic alignment of trial data and generation of histograms * Large variety of options for selecting and ordering trial data * Descriptive and non-parametric statistics * XY analog displays * Data export with flexible format control * Up to 72 plots per page * Display templates can be saved and reloaded * Free for public or private use * Adaptable to almost any data file format

Proper citation: MatOFF (RRID:SCR_006821) Copy   


  • RRID:SCR_006837

    This resource has 10+ mentions.

http://dally.nimh.nih.gov/index.html

A program developed by the NIMH Laboratory of Neuropsychology for data acquisition and experimental control of neurophysiological experiments. The purpose of this website is to make it easier to access new versions of NIMH CORTEX and its supporting documents. Ultimately, it is also hoped that these pages will make it easier for users to report bugs, request enhancements, and obtain help. Download the latest version and unzip it into a new sub-directory. Then read the on-line documentation. For the new user, the User''s Manuals are invaluable in specifying system requirements and giving an overview of the features and necessary hardware. The Function reference goes into more detail about how to write experiments using NIMH CORTEX. The Demos reference is a good place for new and experienced users to start to get an idea of what NIMH CORTEX can do these days.

Proper citation: NIMH CORTEX (RRID:SCR_006837) Copy   


  • RRID:SCR_007143

    This resource has 1+ mentions.

http://hendrix.imm.dtu.dk/software/lyngby/

Matlab toolbox for the analysis of functional neuroimages (PET, fMRI). The toolbox contains a number of models: FIR-filter, Lange-Zeger, K-means clustering among others, visualizations and reading of neuroimaging files.

Proper citation: Lyngby (RRID:SCR_007143) Copy   


  • RRID:SCR_007109

    This resource has 10+ mentions.

http://www.bmu.psychiatry.cam.ac.uk/software/

Suite of programs developed for fMRI analysis in a Virtual Pipeline Laboratory facilitates combining program modules from different software packages into processing pipelines to create analysis solutions which are not possible with a single software package alone. Current pipelines include fMRI analysis, statistical testing based on randomization methods and fractal spectral analysis. Pipelines are continually being added. The software is mostly written in C. This fMRI analysis package supports batch processing and comprises the following general functions at the first level of individual image analysis: movement correction (interpolation and regression), time series modeling, data resampling in the wavelet domain, hypothesis testing at voxel and cluster levels. Additionally, there is code for second level analysis - group and factorial or ANOVA mapping - after co-registration of voxel statistic maps from individual images in a standard space. The main point of difference from other fMRI analysis packages is the emphasis throughout on the use of data resampling (permutation or randomization) as a basis for inference on individual, group and factorial test statistics at voxel and cluster levels of resolution.

Proper citation: Cambridge Brain Activation (RRID:SCR_007109) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X