Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
The NCGC Pharmaceutical Collection (NPC) is a comprehensive, publically-accessible collection of approved and investigational drugs for high-throughput screening that provides a valuable resource for both validating new models of disease and better understanding the molecular basis of disease pathology and intervention. The NPC has already generated several useful probes for studying a diverse cross section of biology, including novel targets and pathways. NCGC provides access to its set of approved drugs and bioactives through the Therapeutics for Rare and Neglected Diseases (TRND) program and as part of the compound collection for the Tox21 initiative, a collaborative effort for toxicity screening among several government agencies including the US Environmental Protection Agency (EPA), the National Toxicology Program (NTP), the US Food and Drugs Administration (FDA), and the NCGC. Of the nearly 2750 small molecular entities (MEs) that have been approved for clinical use by US (FDA), EU (EMA), Japanese (NHI), and Canadian (HC) authorities and that are amenable to HTS screening, we currently possess 2,400 as part of our screening collection. The NPC resource currently consists of (i) the physical collection suitable for high throughput screening (HTS) and (ii) the informatics browser and database. Putting together the physical collection has been surprisingly challenging in terms of the time and effort required in the informatics, compound management and synthetic chemistry related activities required for this endeavor. We provide access to the NPC screening library through collaboration. Please contact our Scientific Director Dr. Chris Austin for additional information. The other half of the NPC resource is the NPC browser. This is a self-contained software that is actively developed and maintained by the informatics group to provide electronic access to the NPC content. The latest version of the NPC browser for various platforms can be downloaded.
Proper citation: NCGC Pharmaceutical Collection (RRID:SCR_006909) Copy
http://www.sanger.ac.uk/mouseportal/
Database of mouse research resources at Sanger: BACs, targeting vectors, targeted ES cells, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen. The Wellcome Trust Sanger Institute generates, characterizes, and uses a variety of reagents for mouse genetics research. It also aims to facilitate the distribution of these resources to the external scientific community. Here, you will find unified access to the different resources available from the Institute or its collaborators. The resources include: 129S7 and C57BL6/J bacterial artificial chromosomes (BACs), MICER gene targeting vectors, knock-out first conditional-ready gene targeting vectors, embryonic stem (ES) cells with gene targeted mutations or with retroviral gene trap insertions, mutant mouse lines, and phenotypic data generated from the Institute''''s primary screen.
Proper citation: Sanger Mouse Resources Portal (RRID:SCR_006239) Copy
https://github.com/hahnlab/CAFExp
Software tool for computational analysis of gene family evolution. Used for statistical analysis of evolution gene family sizes. Models evolution of gene family sizes over phylogeny.
Proper citation: Computational Analysis of gene Family Evolution (RRID:SCR_018924) Copy
https://github.com/broadinstitute/Drop-seq
Software Java tools for analyzing Drop-seq data. Used to analyze gene expression from thousands of individual cells simultaneously. Analyzes mRNA transcripts while remembering origin cell transcript.
Proper citation: Drop-seq tools (RRID:SCR_018142) Copy
https://github.com/sreeramkannan/Shannon
Software tool for de novo transcriptome assembly from RNA-Seq data.
Proper citation: Shannon (RRID:SCR_017037) Copy
https://bioconductor.org/packages/SNPRelate/
Software R package as parallel computing toolset for relatedness and principal component analysis of SNP data.
Proper citation: SNPRelate (RRID:SCR_022719) Copy
https://github.com/xfengnefx/hifiasm-meta
Software tool as metagenome assembler that exploits high accuracy of recent data. De novo metagenome assembler, based on haplotype resolved de novo assembler for PacBio Hifi reads. Workflow consists of optional read selection, sequencing error correction, read overlapping, string graph construction and graph cleaning.
Proper citation: hifiasm-meta (RRID:SCR_022771) Copy
https://CRAN.R-project.org/package=ComplexUpset
Software R package for visualization of intersecting sets. Used for quantitative analysis of sets, their intersections, and aggregates of intersections. Visualizes set intersections in matrix layout and introduces aggregates based on groupings and queries.
Proper citation: ComplexUpset (RRID:SCR_022752) Copy
https://github.com/tobiasrausch/alfred
Web application as interactive multi-sample BAM alignment statistics, feature counting and feature annotation for long- and short-read sequencingas.
Proper citation: Alfred (RRID:SCR_023354) Copy
Web application that helps design, evaluate and clone guide sequences for the CRISPR/Cas9 system. This sgRNA design tool assists with guide selection in a variety of genomes and pre-calculated results for all human coding exons as a UCSC Genome Browser track.
Proper citation: CRISPOR (RRID:SCR_015935) Copy
http://chgr.mc.vanderbilt.edu/page/gist
Software package to test if a marker can account in part for the linkage signal in its region. There are two versions of the software: Windows and Linux/Unix.
Proper citation: Genotype-IBD Sharing Test (RRID:SCR_006257) Copy
https://reich.hms.harvard.edu/software
Software application that finds skews in ancestry that are potentially associated with disease genes in recently mixed populations like African Americans. It can be downloaded for either UNIX or Linux.
Proper citation: Ancestrymap (RRID:SCR_004353) Copy
http://www.genome.gov/Glossary/
Glossary of Genetic Terms to help everyone understand the terms and concepts used in genetic research. In addition to definitions, specialists in the field of genetics share their descriptions of terms, and many terms include images, animation and links to related terms.
Proper citation: Talking Glossary of Genetic Terms (RRID:SCR_003215) Copy
http://compbio.mit.edu/ChromHMM/
Software tool for chromatin state discovery and characterization. Used for chromatin state discovery and genome annotation of non coding genome using epigenomic information across one or multiple cell types. Combines multiple genome wide epigenomic maps, and uses combinatorial and spatial mark patterns to infer complete annotation for each cell type. Provides automated enrichment analysis of resulting annotations.
Proper citation: ChromHMM (RRID:SCR_018141) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
https://www.mc.vanderbilt.edu/victr/dcc/projects/acc/index.php/Main_Page
A national consortium formed to develop, disseminate, and apply approaches to research that combine DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research. The consortium is composed of seven member sites exploring the ability and feasibility of using EMR systems to investigate gene-disease relationships. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE. The consortium uses data from the EMR clinical systems that represent actual health care events and focuses on ethical issues such as privacy, confidentiality, and interactions with the broader community.
Proper citation: eMERGE Network: electronic Medical Records and Genomics (RRID:SCR_007428) Copy
Resource for experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Most of these noncoding elements were selected for testing based on their extreme conservation in other vertebrates or epigenomic evidence (ChIP-Seq) of putative enhancer marks. Central public database of experimentally validated human and mouse noncoding fragments with gene enhancer activity as assessed in transgenic mice. Users can retrieve elements near single genes of interest, search for enhancers that target reporter gene expression to particular tissue, or download entire collections of enhancers with defined tissue specificity or conservation depth.
Proper citation: VISTA Enhancer Browser (RRID:SCR_007973) Copy
The Distributed Annotation System (DAS) defines a communication protocol used to exchange annotations on genomic or protein sequences. It is motivated by the idea that such annotations should not be provided by single centralized databases, but should instead be spread over multiple sites. Data distribution, performed by DAS servers, is separated from visualization, which is done by DAS clients. The advantages of this system are that control over the data is retained by data providers, data is freed from the constraints of specific organisations and the normal issues of release cycles, API updates and data duplication are avoided. DAS is a client-server system in which a single client integrates information from multiple servers. It allows a single machine to gather up sequence annotation information from multiple distant web sites, collate the information, and display it to the user in a single view. Little coordination is needed among the various information providers. DAS is heavily used in the genome bioinformatics community. Over the last years we have also seen growing acceptance in the protein sequence and structure communities. A DAS-enabled website or application can aggregate complex and high-volume data from external providers in an efficient manner. For the biologist, this means the ability to plug in the latest data, possibly including a user''s own data. For the application developer, this means protection from data format changes and the ability to add new data with minimal development cost. Here are some examples of DAS-enabled applications or websites for end users: :- Dalliance Experimental Web/Javascript based Genome Viewer :- IGV Integrative Genome Viewer java based browser for many genomes :- Ensembl uses DAS to pull in genomic, gene and protein annotations. It also provides data via DAS. :- Gbrowse is a generic genome browser, and is both a consumer and provider of DAS. :- IGB is a desktop application for viewing genomic data. :- SPICE is an application for projecting protein annotations onto 3D structures. :- Dasty2 is a web-based viewer for protein annotations :- Jalview is a multiple alignment editor. :- PeppeR is a graphical viewer for 3D electron microscopy data. :- DASMI is an integration portal for protein interaction data. :- DASher is a Java-based viewer for protein annotations. :- EpiC presents structure-function summaries for antibody design. :- STRAP is a STRucture-based sequence Alignment Program. Hundreds of DAS servers are currently running worldwide, including those provided by the European Bioinformatics Institute, Ensembl, the Sanger Institute, UCSC, WormBase, FlyBase, TIGR, and UniProt. For a listing of all available DAS sources please visit the DasRegistry. Sponsors: The initial ideas for DAS were developed in conversations with LaDeana Hillier of the Washington University Genome Sequencing Center.
Proper citation: Distributed Annotation System (RRID:SCR_008427) Copy
http://www.broad.mit.edu/mpg/grail/
A tool to examine relationships between genes in different disease associated loci. Given several genomic regions or SNPs associated with a particular phenotype or disease, GRAIL looks for similarities in the published scientific text among the associated genes. As input, users can upload either (1) SNPs that have emerged from a genome-wide association study or (2) genomic regions that have emerged from a linkage scan or are associated common or rare copy number variants. SNPs should be listed according to their rs#''s and must be listed in HapMap. Genomic Regions are specified by a user-defined identifier, the chromosome that it is located on, and the start and end base-pair positions for the region. Grail can take two sets of inputs - Query regions and Seed regions. Seed regions are definitely associated SNPs or genomic regions, and Query regions are those regions that the user is attempting to evaluate agains them. In many applications the two sets are identical. Based on textual relationships between genes, GRAIL assigns a p-value to each region suggesting its degree of functional connectivity, and picks the best candidate gene. GRAIL is developed by Soumya Raychaudhuri in the labs of David Altshuler and Mark Daly at the Center for Human Genetic Research of Massachusetts General Hospital and Harvard Medical School, and the Broad Institute. GRAIL is described in manuscript, currently in preparation.
Proper citation: Gene Relationships Across Implicated Loci (RRID:SCR_008537) Copy
https://github.com/agshumate/Liftoff
Software genome annotation lift-over tool capable of mapping genes between two assemblies of the same or closely related species. Aligns genes from reference genome to target genome and finds the mapping that maximizes sequence identity while preserving the structure of each exon, transcript and gene. Used for accurate mapping of gene annotations.
Proper citation: Liftoff (RRID:SCR_026535) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.