Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 2 showing 21 ~ 40 out of 445 results
Snippet view Table view Download 445 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_002696

    This resource has 10+ mentions.

http://bioinf-apache.charite.de/supertarget_v2/

Database for analyzing drug-target interactions, it integrates drug-related information associated with medical indications, adverse drug effects, drug metabolism, pathways and Gene Ontology (GO) terms for target proteins. At present (May 2013), the updated database contains >6000 target proteins, which are annotated with >330 000 relations to 196 000 compounds (including approved drugs); the vast majority of interactions include binding affinities and pointers to the respective literature sources. The user interface provides tools for drug screening and target similarity inclusion. A query interface enables the user to pose complex queries, for example, to find drugs that target a certain pathway, interacting drugs that are metabolized by the same cytochrome P450 or drugs that target proteins within a certain affinity range.

Proper citation: SuperTarget (RRID:SCR_002696) Copy   


http://people.biochem.umass.edu/fournierlab/3dmodmap/

Database of maps showing the sites of modified rRNA nucleotides. Access to the rRNA sequences, secondary structures both with modification sites indicated, 3D modification maps and the supporting tables of equivalent nucleotides for rRNA from model organisms including yeast, arabidopsis, e. coli and human is provided. This database complements the Yeast snoRNA Database at UMass-Amherst and relies on linking to some content from that database, as well as to others by colleagues in related fields. Therefore, please be very cognizant as to the source when citing information obtained herein. Locations of modified rRNA nucleotides within the 3D structure of the ribosome.

Proper citation: 3D Ribosomal Modification Maps Database (RRID:SCR_003097) Copy   


http://www.mitomap.org/

Database of polymorphisms and mutations of the human mitochondrial DNA. It reports published and unpublished data on human mitochondrial DNA variation. All data is curated by hand. If you would like to submit published articles to be included in mitomap, please send them the citation and a pdf.

Proper citation: MITOMAP - A human mitochondrial genome database (RRID:SCR_002996) Copy   


http://mistdb.com

Database which contains the signal transduction proteins for complete and draft bacterial and archaeal genomes. The MiST2 database identifies and catalogs the repertoire of signal transduction proteins in microbial genomes.

Proper citation: MiST - Microbial Signal Transduction database (RRID:SCR_003166) Copy   


http://www.fruitfly.org

Database on the sequence of the euchromatic genome of Drosophila melanogaster In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community. Resources * Universal Proteomics Resource: Search for clones for expression and tissue culture * Materials: Request genomic or cDNA clones, library filters or fly stocks * Download Sequence data sets and annotations in fasta or xml format by http or ftp * Publications: Browse or download BDGP papers * Methods: BDGP laboratory protocols and vector maps * Analysis Tools: Search sequences for CRMs, promoters, splice sites, and gene predictions * Apollo: Genome annotation viewer and editor September 15, 2009 Illumina RNA-Seq data from 30 developmental time points of D. melanogaster has been submitted to the Short Read Archive at NCBI as part of the modENCODE project. The data set currently contains 2.2 billion single-end and paired reads and over 201 billion base pairs.

Proper citation: Berkeley Drosophila Genome Project (RRID:SCR_013094) Copy   


  • RRID:SCR_008007

    This resource has 1000+ mentions.

http://www.chibi.ubc.ca/Gemma

Resource for reuse, sharing and meta-analysis of expression profiling data. Database and set of tools for meta analysis, reuse and sharing of genomics data. Targeted at analysis of gene expression profiles. Users can search, access and visualize coexpression and differential expression results.

Proper citation: Gemma (RRID:SCR_008007) Copy   


  • RRID:SCR_010510

    This resource has 1+ mentions.

http://bnaber.org

bNAber is the Broadly Neutralizing Antibody E-Resource Database, analysis, visualization, and data discovery tool for broadly neutralizing HIV-1 antibodies (bNAbs). bNAber seeks to be a vital tool in the search for an AIDS vaccine.

Proper citation: bNAber (RRID:SCR_010510) Copy   


  • RRID:SCR_023924

    This resource has 1+ mentions.

http://carbonyldb.missouri.edu/CarbonylDB/index.php/

Curated data resource of protein carbonylation sites.Manually curated data resource of experimentally confirmed carbonylated proteins and sites.Provides information on other related resources such as list of other oxidative protein modification databases, list of protein oxidation and carbonylation prediction tools.

Proper citation: CarbonylDB (RRID:SCR_023924) Copy   


http://www.zfishbook.org/NGP/journalcontent/SCORE/SCORE.html

Narrative resource describing a visual data analysis and collection approach that takes advantage of the cylindrical nature of the zebrafish allowing for an efficient and effective method for image capture called, Specimen in a Corrected Optical Rotational Enclosure (SCORE) Imaging. To achieve a non-distorted image, zebrafish were placed in a fluorinated ethylene propylene (FEP) tube with a surrounding, optically corrected imaging solution: water. By similarly matching the refractive index of the housing (FEP tubing) to that of the inner liquid and outer liquid (water), distortion was markedly reduced, producing a crisp imagable specimen that is able to be fully rotated 360 degrees. A similar procedure was established for fixed zebrafish embryos using convenient, readily available borosilicate capillaries surrounded by 75% glycerol. The method described could be applied to chemical genetic screening and other, related high-throughput methods within the fish community and among other scientific fields.

Proper citation: Zebrafish - SCORE Imaging: Specimen in a Corrected Optical Rotational Enclosure (RRID:SCR_001300) Copy   


  • RRID:SCR_002477

    This resource has 10+ mentions.

http://www.evidenceontology.org

A controlled vocabulary that describes types of scientific evidence within the realm of biological research that can arise from laboratory experiments, computational methods, manual literature curation, and other means. Researchers can use these types of evidence to support assertions about research subjects that result from scientific research, such as scientific conclusions, gene annotations, or other statements of fact. ECO comprises two high-level classes, evidence and assertion method, where evidence is defined as a type of information that is used to support an assertion, and assertion method is defined as a means by which a statement is made about an entity. Together evidence and assertion method can be combined to describe both the support for an assertion and whether that assertion was made by a human being or a computer. However, ECO can not be used to make the assertion itself; for that, one would use another ontology, free text description, or other means. ECO was originally created around the year 2000 to support gene product annotation by the Gene Ontology. Today ECO is used by many groups concerned with provenance in scientific research. ECO is used in AmiGO 2

Proper citation: ECO (RRID:SCR_002477) Copy   


https://prokoplab.com/vistedd/

Database of SARS-CoV-2 and other viruses. Integrates structural and dynamic insights with viral evolution for proteins coded by virus. Each virus within database has workflow performed on each protein. Workflow consists of protein modeling, molecular dynamic simulations, evolutionary analysis, and mapping of protein-protein interactions. On page for each protein is link to individual protein data folder system, video of protein rotating with conservation, details of protein function, widget to purchase 3D print of protein at cost of production, amino acid movement from molecular dynamic simulations, and table of data for each amino acid of protein.

Proper citation: Viral Integrated Structural Evolution Dynamic Database (RRID:SCR_018793) Copy   


  • RRID:SCR_025299

    This resource has 1+ mentions.

https://compbio.uth.edu/FusionGDB2/

Functional annotation database of human fusion genes.FusionGDB 2.0 has updates of contents such as up-to-date human fusion genes, fusion gene breakage tendency score with FusionAI deep learning model based on 20 kb DNA sequence around BP, investigation of overlapping between fusion breakpoints with human genomic features across cellular role's categories, transcribed chimeric sequence and following open reading frame analysis with coding potential based on deep learning approach with Ribo-seq read features, and rigorous investigation of protein feature retention of individual fusion partner genes in protein level.

Proper citation: FusionGDB2 (RRID:SCR_025299) Copy   


http://publications.nigms.nih.gov/computinglife/

An NIGMS magazine that showcases the exciting ways that scientists are using the power of computers to expand our knowledge of biology and medicine. From text messaging friends to navigating city streets with GPS technology, we''re all living the computing life. But as we''ve upgraded from snail mail and compasses, so too have scientists. Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through your school and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could offer insights into the fundamental processes that keep us alive and make us sick. This booklet introduces you to just some of the ways that physicists, biologists and even artists are computing life. Each section focuses on a different research problem, offers examples of current scientific projects and acquaints you with the people conducting the work. You can follow the links for online extras and other opportunities to learn aboutand get involved inthis exciting new interdisciplinary field.

Proper citation: NIGMS Computing Life (RRID:SCR_005850) Copy   


  • RRID:SCR_001378

    This resource has 1+ mentions.

http://www.morpholinodatabase.org/

Central database to house data on morpholino screens currently containing over 700 morpholinos including control and multiple morpholinos against the same target. A publicly accessible sequence-based search opens this database for morpholinos against a particular target for the zebrafish community. Morpholino Screens: They set out to identify all cotranslationally translocated genes in the zebrafish genome (Secretome/CTT-ome). Morpholinos were designed against putative secreted/CTT targets and injected into 1-4 cell stage zebrafish embryos. The embryos were observed over a 5 day period for defects in several different systems. The first screen examined 184 gene targets of which 26 demonstrated defects of interest (Pickart et al. 2006). A collaboration with the Verfaillie laboratory examined the knockdown of targets identified in a comparative microarray analysis of hematopoietic stem cells demonstrating how microarray and morpholino technologies can be used in conjunction to enrich for defects in specific developmental processes. Currently, many collaborations are underway to identify genes involved in morphological, kidney, skin, eye, pigment, vascular and hematopoietic development, lipid metabolism and more. The screen types referred to in the search functions are the specific areas of development that were examined during the various screens, which include behavior, general morphology, pigmentation, toxicity, Pax2 expression, and development of the craniofacial structures, eyes, kidneys, pituitary, and skin. Only data pertaining to specific tests performed are presented. Due to the complexity of this international collaboration and time constraints, not all morpholinos were subjected to all screen types. They are currently expanding public access to the database. In the future we will provide: * Mortality curves and dose range for each morpholino * Preliminary data regarding the effectiveness of each morpholino * Expanded annotation for each morpholino * External linkage of our morpholino sequences to ZFIN and Ensembl. To submit morpholino-knockdown results to MODB please contact the administrator for a user name and password.

Proper citation: Morpholino Database (RRID:SCR_001378) Copy   


  • RRID:SCR_001993

    This resource has 100+ mentions.

http://www.ebi.ac.uk/biomodels-main/

Repository of mathematical models of biological and biomedical systems. Hosts selection of existing literature based physiologically and pharmaceutically relevant mechanistic models in standard formats. Features programmatic access via Web Services. Each model is curated to verify that it corresponds to reference publication and gives proper numerical results. Curators also annotate components of models with terms from controlled vocabularies and links to other relevant data resources allowing users to search accurately for models they need. Models can be retrieved in SBML format and import/export facilities are being developed to extend spectrum of formats supported by resource.

Proper citation: BioModels (RRID:SCR_001993) Copy   


  • RRID:SCR_002103

    This resource has 10+ mentions.

http://www.pathwaycommons.org/pc

Database of publicly available pathways from multiple organisms and multiple sources represented in a common language. Pathways include biochemical reactions, complex assembly, transport and catalysis events, and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathways were downloaded directly from source databases. Each source pathway database has been created differently, some by manual extraction of pathway information from the literature and some by computational prediction. Pathway Commons provides a filtering mechanism to allow the user to view only chosen subsets of information, such as only the manually curated subset. The quality of Pathway Commons pathways is dependent on the quality of the pathways from source databases. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. It currently contains data from nine databases with over 1,668 pathways, 442,182 interactions,414 organisms and will be continually expanded and updated. (April 2013)

Proper citation: Pathway Commons (RRID:SCR_002103) Copy   


https://polymerscreen.yale.edu

Open access web app that allows users to search for optimal condition for extraction of membrane proteins into membrane active polymers which allows for retention of native membrane environment around target protein.

Proper citation: MAP Database Guide for Membrane Protein Solubilization (RRID:SCR_025656) Copy   


  • RRID:SCR_026690

    This resource has 1+ mentions.

https://endomap.hms.harvard.edu/

Structural interactome viewer. Interactive database of endosomal protein-protein interactions identified by cross-linking mass spectrometry and modeled by AlphaFold multimer. Structural protein interactome of human early endosomes.

Proper citation: EndoMap (RRID:SCR_026690) Copy   


  • RRID:SCR_000653

    This resource has 1+ mentions.

http://gowiki.tamu.edu/wiki/

A wiki where users of the Gene Ontology can contribute and view notes about how specific GO terms are used. GONUTS can also be used as a GO term browser, or to search for GO annotations of specific genes from included organisms. The rationale for this wiki is based on helping new users of the gene ontology understand and use it. The GONUTS wiki is not an official product of the the Gene Ontology consortium. The GO consortium has a public wiki at their website, http://wiki.geneontology.org/. Maintaining the ontology involves many decisions to carefully choose terms and relationships. These decisions are currently made at GO meetings and via online discussion using the GO mailing lists and the Sourceforge curator request tracker. However, it is difficult for someone starting to use GO to understand these decisions. Some insight can be obtained by mining the tracker, the listservs and the minutes of GO meetings, but this is difficult, as these discussions are often dispersed and sometimes don't contain the GO accessions in the relevant messages. Wikis provide a way to create collaboratively written documentation for each GO term to explain how it should be used, how to satisfy the true path requirement, and whether an annotation should be placed at a different level. In addition, the wiki pages provide a discussion space, where users can post questions and discuss possible changes to the ontology. GONUTS is currently set up so anyone can view or search, but only registered users can edit or add pages. Currently registered users can create new users, and we are working to add at least one registered user for each participating database (So far we have registered users at EcoliHub, EcoCyc, GOA, BeeBase, SGD, dictyBase, FlyBase, WormBase, TAIR, Rat Genome Database, ZFIN, MGI, UCL and AgBase...

Proper citation: GONUTS (RRID:SCR_000653) Copy   


http://www.sbgn.org/Main_Page

The Systems Biology Graphical Notation (SBGN) project aims to develop high quality, standard graphical languages for representing biological processes and interactions. Each SBGN language is based on the consensus of the broad international SBGN community of biologists, curators and software developers. Over the course of its development many individuals, organizations and companies made invaluable contributions to the SBGN through participating in discussions and meetings, providing feedback on the documentation and worked examples, adopting the standard and spreading the word. Circuit diagrams and Unified Modeling Language diagrams are just two examples of standard visual languages that help accelerate work by promoting regularity, removing ambiguity and enabling software tool support for communication of complex information. Ironically, despite having one of the highest ratios of graphical to textual information, biology still lacks standard graphical notations. The recent deluge of biological knowledge makes addressing this deficit a pressing concern. Toward this goal, we present the Systems Biology Graphical Notation (SBGN), a visual language developed by a community of biochemists, modelers and computer scientists. SBGN consists of three complementary languages: process diagram, entity relationship diagram and activity flow diagram. Together they enable scientists to represent networks of biochemical interactions in a standard, unambiguous way. We believe that SBGN will foster efficient and accurate representation, visualization, storage, exchange and reuse of information on all kinds of biological knowledge, from gene regulation, to metabolism, to cellular signaling. A list of software packages known to provide (or have started to develop) support for SBGN notations is available.

Proper citation: Systems Biology Graphical Notation (RRID:SCR_004671) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X