Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Open access knowledge base for microbial natural products discovery. Database of microbially derived natural product structures. Provides coverage of bacterial and fungal natural products to visualize chemical diversity. Includes compounds and contains referenced data for structure, compound names, source organisms, isolation references, total syntheses, and instances of structural reassignment. Interactive web portal permits searching by structure, substructure, and physical properties. Provides mechanisms for visualizing natural products chemical space and dashboards for displaying author and discovery timeline data. Atlas has been developed under FAIR principles.
Proper citation: Natural Products Atlas (RRID:SCR_025107) Copy
https://spatialge.moffitt.org/
Web application, a user friendly, point-and-click implementation of spatialGE R package. Contains collection of methods for visualization and spatial statistics analysis of tissue microenvironment and heterogeneity using spatial transcriptomics experiments. Used for user-friendly analysis of spatial transcriptomics data.
Proper citation: Moffitt spatialGE (RRID:SCR_025980) Copy
https://cbc.app.vumc.org/tnbc/
Website for predicting the subtype of triple negative breast cancer sample based on its gene expression profile.
Proper citation: TNBCtype (RRID:SCR_026238) Copy
Collection of human pancreas data and images. Platform to share data from human pancreas samples. Houses reference datasets from human pancreas samples, achieved through generosity of organ donors and their families.
Proper citation: Pancreatlas (RRID:SCR_018567) Copy
The Cancer Text Information Extraction System (caTIES) provides tools for de-identification and automated coding of free-text structured pathology reports. It also has a client that can be used to search these coded reports. The client also supports Tissue Banking and Honest Broker operations. caTIES focuses on two important challenges of bioinformatics * Information extraction (IE) from free text * Access to tissue. Regarding the first challenge, information from free-text pathology documents represents a vital and often underutilized source of data for cancer researchers. Typically, extracting useful data from these documents is a slow and laborious manual process requiring significant domain expertise. Application of automated methods for IE provides a method for radically increasing the speed and scope with which this data can be accessed. Regarding the second challenge, there is a pressing need in the cancer research community to gain access to tissue specific to certain experimental criteria. Presently, there are vast quantities of frozen tissue and paraffin embedded tissue throughout the country, due to lack of annotation or lack of access to annotation these tissues are often unavailable to individual researchers. caTIES has three goals designed to solve these problems: * Extract coded information from free text Surgical Pathology Reports (SPRs), using controlled terminologies to populate caBIG-compliant data structures. * Provide researchers with the ability to query, browse and create orders for annotated tissue data and physical material across a network of federated sources. With caTIES the SPR acts as a locator to tissue resources. * Pioneer research for distributed text information extraction within the context of caBIG. caTIES focuses on IE from SPRs because they represent a high-dividend target for automated analysis. There are millions of SPRs in each major hospital system, and SPRs contain important information for researchers. SPRs act as tissue locators by indicating the presence of tissue blocks, frozen tissue and other resources, and by identifying the relationship of the tissue block to significant landmarks such as tumor margins. At present, nearly all important data within SPRs are embedded within loosely-structured free-text. For these reasons, SPRs were chosen to be coded through caTIES because facilitating access to information contained in SPRs will have a powerful impact on cancer research. Once SPR information has been run through the caTIES Pipeline, the data may be queried and inspected by the researcher. The goal of this search may be to extract and analyze data or to acquire slides of tissue for further study. caTIES provides two query interfaces, a simple query dashboard and an advanced diagram query builder. Both of these interfaces are capable of NCI Metathesaurus, concept-based searching as well as string searching. Additionally, the diagram interface is capable of advanced searching functionalities. An important aspect of the interface is the ability to manage queries and case sets. Users are able to vet query results and save them to case sets which can then be edited at a later time. These can be submitted as tissue orders or used to derive data extracts. Queries can also be saved, and modified at a later time. caTIES provides the following web services by default: MMTx Service, TIES Coder Service
Proper citation: caTIES - Cancer Text Information Extraction System (RRID:SCR_003444) Copy
http://www.cancerdiagnosis.nci.nih.gov/
National program to improve the diagnosis and assessment of cancer by moving scientific knowledge into clinical practice by coordinating and funding resources and research for the development of innovative in vitro diagnostics, novel diagnostic technologies and appropriate human specimens. The Cancer Diagnosis Program is divided into four branches: Biorepository and Biospecimen Research Branch (BBRB), Diagnostic Biomarkers and Technology Branch (DBTB), Diagnostics Evaluation Branch (DEB), and the Pathology Investigation and Resources Branch (PIRB).
Proper citation: CDP (RRID:SCR_004236) Copy
http://cancer.osu.edu/Pages/index.aspx
As the Midwest''s first and Ohio''s only fully dedicated cancer hospital and research institute, The Ohio State University Comprehensive Cancer CenterArthur G. James Cancer Hospital and Solove Research Institute (OSUCCC-James) is one of the nation''s premier cancer centers for the prevention, detection and treatment of cancer. The OSUCCC-James is one of only 40 centers in the United States designated by the National Cancer Institute a Comprehensive Cancer Center. In addition, the OSUCCC-James is a founding member of the National Comprehensive Cancer Network (NCCN), an alliance of 21 of the world''s leading cancer centers that develops clinical practice guidelines to improve the quality and effectiveness of care provided to patients with cancer. The Ohio State cancer program is part of The Ohio State University, the largest public university in the nation. We are affiliated with The Ohio State University Medical Center, one of the largest and most diverse academic medical centers in the nation and the only academic medical center in central Ohio. The cancer program at Ohio State encompasses more than 200 comprehensive cancer center members from 13 of the 18 colleges at The Ohio State University and includes physicians from 16 specialties. The OSUCCCJames'' singular focus on cancer has led to multiple accomplishments that have changed the standards of care with respect to prevention, diagnosis and treatment, in a way that substantially improves outcomes for cancer patients.
Proper citation: OSUCCC-James (RRID:SCR_004790) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 27, 2016. Curated database of information about known biomolecular interactions and key cellular processes assembled into signaling pathways. All interactions are assembled into pathways, and can be accessed by performing searches for biomolecules, or processes, or by viewing predefined pathways. This was a collaborative project between the NCI and Nature Publishing Group (NPG) from 2006 until September 22nd, 2012, and is no longer being updated. PID is aimed at the cancer research community and others interested in cellular pathways, such as neuroscientists, developmental biologists, and immunologists. The database focuses on the biomolecular interactions that are known or believed to take place in human cells. It can be browsed as an online encyclopedia, used to run computational analyses, or employed in ways that combine these two approaches. In addition to PID''''s predefined pathways, search results are displayed as dynamically constructed interaction networks. These features of PID render it a useful tool for both biologists and bioinformaticians. PID offers a range of search features to facilitate pathway exploration. Users can browse the predefined set of pathways or create interaction network maps centered on a single molecule or cellular process of interest. In addition, the batch query tool allows users to upload long list(s) of molecules, such as those derived from microarray experiments, and either overlay these molecules onto predefined pathways or visualize the complete molecular connectivity map. Users can also download molecule lists, citation lists and complete database content in extensible markup language (XML) and Biological Pathways Exchange (BioPAX) Level 2 format. The database is supplemented by a concise editorial section that includes specially written synopses of recent important research articles in areas related to cancer research, and specially commissioned Bioinformatics Primers that provide practical advice on how to make the most of other relevant online resources. The database and editorial content are updated monthly, and users can opt to receive a monthly email alert to stay informed about new content. Note: as of September 23, 2012 the PID is no longer being actively curated. NCI will maintain the PID website and data for twelve months beyond September 2012 to allow interested parties to obtain the previously curated data before the site is retired in September 2013.
Proper citation: Pathway Interaction Database (RRID:SCR_006866) Copy
SEER collects cancer incidence data from population-based cancer registries covering approximately 47.9 percent of the U.S. population. The SEER registries collect data on patient demographics, primary tumor site, tumor morphology, stage at diagnosis, and first course of treatment, and they follow up with patients for vital status.There are two data products available: SEER Research and SEER Research Plus. This was motivated because of concerns about the increasing risk of re-identifiability of individuals. The Research Plus databases require more rigorous process for access that includes user authentication through Institutional Account or multiple-step request process for Non-Institutional users.
Proper citation: Surveillance Epidemiology and End Results (RRID:SCR_006902) Copy
Next generation sequencing and genotyping services provided to investigators working to discover genes that contribute to disease. On-site statistical geneticists provide insight into analysis issues as they relate to study design, data production and quality control. In addition, CIDR has a consulting agreement with the University of Washington Genetics Coordinating Center (GCC) to provide statistical and analytical support, most predominantly in the areas of GWAS data cleaning and methods development. Completed studies encompass over 175 phenotypes across 530 projects and 620,000 samples. The impact is evidenced by over 380 peer-reviewed papers published in 100 journals. Three pathways exist to access the CIDR genotyping facility: * NIH CIDR Program: The CIDR contract is funded by 14 NIH Institutes and provides genotyping and statistical genetic services to investigators approved for access through competitive peer review. An application is required for projects supported by the NIH CIDR Program. * The HTS Facility: The High Throughput Sequencing Facility, part of the Johns Hopkins Genetic Resources Core Facility, provides next generation sequencing services to internal JHU investigators and external scientists on a fee-for-service basis. * The JHU SNP Center: The SNP Center, part of the Johns Hopkins Genetic Resources Core Facility, provides genotyping to internal JHU investigators and external scientists on a fee-for-service basis. Data computation service is included to cover the statistical genetics services provided for investigators seeking to identify genes that contribute to human disease. Human Genotyping Services include SNP Genome Wide Association Studies, SNP Linkage Scans, Custom SNP Studies, Cancer Panel, MHC Panels, and Methylation Profiling. Mouse Genotyping Services include SNP Scans and Custom SNP Studies.
Proper citation: Center for Inherited Disease Research (RRID:SCR_007339) Copy
http://www.nia.nih.gov/research/dab/aged-rodent-tissue-bank-handbook/tissue-arrays
Offer high-throughput analysis of tissue histology and protein expression for the biogerontology research community. Each array is a 4 micron section that includes tissue cores from multiple tissues at multiple ages on one slide. The arrays are made from ethanol-fixed tissue and can be used for all techniques for which conventional tissue sections can be used. Ages are chosen to span the life from young adult to very old age. (available ages: 4, 12, 18, 24 and 28 months of age) Images of H&E stained punches are available for Liver, Cardiac Muscle, and Brain. The NIA aged rodent tissue arrays were developed with assistance from the National Cancer Institute (NCI) Tissue Array Research Program (TARP), led by Dr. Stephen Hewitt, Director. NCI TARP contains more information on tissue array construction, protocols for using arrays, and references. Preparation and Product Description Tissue arrays are prepared in parallel from different sets of animals so that experiments can be conducted in duplicate, with each array using unique animals with a unique product number. The product descriptions page describes each array, including: * Strain * Gender * Ages * Tissues * Animal Identification Numbers
Proper citation: Aged Rodent Tissue Arrays (RRID:SCR_007332) Copy
Web platform that provides access to data and tools to study complex networks of genes, molecules, and higher order gene function and phenotypes. Sequence data (SNPs) and transcriptome data sets (expression genetic or eQTL data sets). Quantitative trait locus (QTL) mapping module that is built into GN is optimized for fast on-line analysis of traits that are controlled by combinations of gene variants and environmental factors. Used to study humans, mice (BXD, AXB, LXS, etc.), rats (HXB), Drosophila, and plant species (barley and Arabidopsis). Users are welcome to enter their own private data.
Proper citation: GeneNetwork (RRID:SCR_002388) Copy
THIS RESOURCE IS NO LONGER IN SERVICE, documented on May 11, 2016. Repository of brain-mapping data (surfaces and volumes; structural and functional data) derived from studies including fMRI and MRI from many laboratories, providing convenient access to a growing body of neuroimaging and related data. WebCaret is an online visualization tool for viewing SumsDB datasets. SumsDB includes: * data on cerebral cortex and cerebellar cortex * individual subject data and population data mapped to atlases * data from FreeSurfer and other brainmapping software besides Caret SumsDB provides multiple levels of data access and security: * Free (public) access (e.g., for data associated with published studies) * Data access restricted to collaborators in different laboratories * Owner-only access for work in progress Data can be downloaded from SumsDB as individual files or as bundles archived for offline visualization and analysis in Caret WebCaret provides online Caret-style visualization while circumventing software and data downloads. It is a server-side application running on a linux cluster at Washington University. WebCaret "scenes" facilitate rapid visualization of complex combinations of data Bi-directional links between online publications and WebCaret/SumsDB provide: * Links from figures in online journal article to corresponding scenes in WebCaret * Links from metadata in WebCaret directly to relevant online publications and figures
Proper citation: SumsDB (RRID:SCR_002759) Copy
Portal for preclinical information and research materials, including web-accessible data and tools, NCI-60 Tumor Cell Line Screen, compounds in vials and plates, tumor cells, animals, and bulk drugs for investigational new drug (IND)-directed studies. DTP has been involved in the discovery or development of more than 70 percent of the anticancer therapeutics on the market today, and will continue helping the academic and private sectors to overcome various therapeutic development barriers, particularly through supporting high-risk projects and therapeutic development for rare cancers. Initially DTP made its drug discovery and development services and the results from the human tumor cell line assay publicly accessible to researchers worldwide. At first, the site offered in vitro human cell line data for a few thousand compounds and in vitro anti-HIV screening data for roughly 42,000 compounds. Today, visitors can find: * Downloadable in vitro human tumor cell line data for some 43,500 compounds and 15,000 natural product extracts * Results for 60,000 compounds evaluated in the yeast assay * In vivo animal model results for 30,000 compounds * 2-D and 3-D chemical structures for more than 200,000 compounds * Molecular target data, including characterizations for at least 1,200 targets, plus data from multiple cDNA microarray projects In addition to browsing DTP's databases and downloading data, researchers can request individual samples or sets of compounds on 96-well plates for research, or they can submit their own compounds for consideration for screening via DTP's online submission form. Once a compound is submitted for screening, researchers can follow its progress and retrieve data using a secure web interface. The NCI has collected information on almost half a million chemical structures in the past 50 years. DTP has made this information accessible and useful for investigators through its 3-D database, a collection of three-dimensional structures for more than 200,000 drugs. Investigators use the 3-D database to screen compounds for anticancer therapeutic activity. Also available on DTP's website are 127,000 connection tables for anticancer agents. A connection table is a convenient way of depicting molecular structures without relying on drawn chemical structures. As unique lists of atoms and their connections, the connection tables can be indexed and stored in computer databases where they can be used for patent searches, toxicology studies, and precursor searching, for example., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Developmental Therapeutics Program (RRID:SCR_003057) Copy
https://cabig.nci.nih.gov/tools/caTRIP
THIS RESOURCE IS NO LONGER IN SERVICE documented June 4, 2013. Allows users to query across a number of caBIG data services, join on common data elements (CDEs), and view results in a user-friendly interface. With an initial focus on enabling outcomes analysis, caTRIP allows clinicians to query across data from existing patients with similar characteristics to find treatments that were administered with success. In doing so, caTRIP can help inform treatment and improve patient care, as well as enable the searching of available tumor tissue, enable locating patients for clinical trials, and enable investigating the association between multiple predictors and their corresponding outcomes such as survival caTRIP relies on the vast array of open source caBIG applications, including: * Tumor Registry, a clinical system that is used to collect endpoint data * cancer Text Information Extraction System (caTIES), a locator of tissue resources that works via the extraction of clinical information from free text surgical pathology reports. while using controlled terminologies to populate caBIG-compliant data structures * caTissue CORE, a tissue bank repository tool for biospecimen inventory, tracking, and basic annotation * Cancer Annotation Engine (CAE), a system for storing and searching pathology annotations * caIntegrator, a tool for storing, querying, and analyzing translational data, including SNP data Requires Java installation and network connectivity.
Proper citation: caTRIP (RRID:SCR_003409) Copy
Protege is a free, open-source platform that provides a growing user community with a suite of tools to construct domain models and knowledge-based applications with ontologies. At its core, Protege implements a rich set of knowledge-modeling structures and actions that support the creation, visualization, and manipulation of ontologies in various representation formats. Protege can be customized to provide domain-friendly support for creating knowledge models and entering data. Further, Protege can be extended by way of a plug-in architecture and a Java-based Application Programming Interface (API) for building knowledge-based tools and applications. An ontology describes the concepts and relationships that are important in a particular domain, providing a vocabulary for that domain as well as a computerized specification of the meaning of terms used in the vocabulary. Ontologies range from taxonomies and classifications, database schemas, to fully axiomatized theories. In recent years, ontologies have been adopted in many business and scientific communities as a way to share, reuse and process domain knowledge. Ontologies are now central to many applications such as scientific knowledge portals, information management and integration systems, electronic commerce, and semantic web services. The Protege platform supports two main ways of modeling ontologies: * The Protege-Frames editor enables users to build and populate ontologies that are frame-based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In this model, an ontology consists of a set of classes organized in a subsumption hierarchy to represent a domain's salient concepts, a set of slots associated to classes to describe their properties and relationships, and a set of instances of those classes - individual exemplars of the concepts that hold specific values for their properties. * The Protege-OWL editor enables users to build ontologies for the Semantic Web, in particular in the W3C's Web Ontology Language (OWL). An OWL ontology may include descriptions of classes, properties and their instances. Given such an ontology, the OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in the ontology, but entailed by the semantics. These entailments may be based on a single document or multiple distributed documents that have been combined using defined OWL mechanisms (see the OWL Web Ontology Language Guide). Protege is based on Java, is extensible, and provides a plug-and-play environment that makes it a flexible base for rapid prototyping and application development.
Proper citation: Protege (RRID:SCR_003299) Copy
http://edoctoring.ncl.ac.uk/Public_site/
Online educational tool that brings challenging clinical practice to your computer, providing medical education that is engaging, challenging and interactive. While there is no substitute for real-life direct contact with patients or colleagues, research has shown that interactive online education can be a highly effective and enjoyable method of learning many components of clinical medicine, including ethics, clinical management, epidemiology and communication skills. eDoctoring offers 25 simulated clinical cases, 15 interactive tutorials and a virtual library containing numerous articles, fast facts and video clips. Their learning material is arranged in the following content areas: * Ethical, Legal and Social Implications of Genetic Testing * Palliative and End-of-Life Care * Prostate Cancer Screening and Shared Decision-Making
Proper citation: eDoctoring (RRID:SCR_003336) Copy
http://www.broadinstitute.org/cancer/software/genepattern
A powerful genomic analysis platform that provides access to hundreds of tools for gene expression analysis, proteomics, SNP analysis, flow cytometry, RNA-seq analysis, and common data processing tasks. A web-based interface provides easy access to these tools and allows the creation of multi-step analysis pipelines that enable reproducible in silico research.
Proper citation: GenePattern (RRID:SCR_003201) Copy
Biomedical technology research center that creates optimal facilities and environments and support for macromolecular structure determination by synchrotron X-ray diffraction at the National Synchrotron Light Source for the benefit of outside and in-house investigators. The PXRR innovates new access modes such as Mail-in crystallography, builds new facilities, currently on the X25 undulator, advances automation, develops remote participation software, collaborates with outside groups, teaches novice users, and supports vising investigators with 7-day, 20-hours staff coverage.
Proper citation: Macromolecular Crystallography Research Resource (RRID:SCR_001442) Copy
https://ostr.ccr.cancer.gov/resources/provider_details/nci-mouse-repository
The NCI Mouse Repository cryoarchives and distributes strains of genetically engineered mice that are of immediate interest to the cancer research community. These are either gene-targeted or transgenic mice that display a cancer-related phenotype, or tool strains (e.g., cre transgenics) that can be used to develop new cancer models. You do not have to be a member of the NCI Mouse Repository or a recipient of NCI funding to have your mouse model distributed through the NCI Mouse Repository. NCI Mouse Repository strains are maintained as live colonies or cryoarchived as frozen embryos, depending on demand. Up to three breeder pairs may be ordered from live colonies. Cryoarchived strains are supplied as frozen embryos or recovery of live mice by the NCI Mouse Repository may be requested.
Proper citation: NCI Mouse Repository (RRID:SCR_002264) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.