Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
https://cran.r-project.org/web/packages/snp.plotter/index.html
An R package that creates publishable-quality plots of p-values using single SNP and/or haplotype data. Main features of the package include options to display a linkage disequilibrium (LD) plot and the ability to plot multiple sets of results simultaneously. Plots can be created using global and/or individual haplotype p-values along with single SNP p-values. Images are created as either Portable Document Format (PDF) or Encapsulated (EPS) files. (entry from Genetic Analysis Software)
Proper citation: R/SNP.PLOTTER (RRID:SCR_009376) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/
Software application (entry from Genetic Analysis Software)
Proper citation: R/SPECTRAL-GEM (RRID:SCR_007414) Copy
The European Bioinformatics Institute (EBI) toolbox area provides a comprehensive range of tools for the field of bioinformatics. These are subdivided into categories in the left menu for convenience. EBI has developed a large number of very useful bioinformatics tools. A few examples include: - Similarity & Homology - the BLAST or FASTA programs can be used to look for sequence similarity and infer homology. - Protein Functional Analysis - InterProScan can be used to search for motifs in your protein sequence. - Proteomic Services NEW - UniProt DAS server allows researchers to show their research results in the context of UniProtKB/Swiss-Prot annotation. - Sequence Analysis - ClustalW2 a sequence alignment tool. - Structural Analysis - MSDfold can be used to query your protein structure and compare it to those in the Protein Data Bank (PDB). - Web Services - provide programmatic access to the various databases and retrieval/analysis services EBI provides. - Tools Miscellaneous - Expression Profiler a set of tools for clustering, analysis and visualization of gene expression and other genomic data. Sponsors: This resource is sponsored by EBI.
Proper citation: Toolbox at the European Bioinformatics Institute (RRID:SCR_002872) Copy
http://harvest.readthedocs.org/en/latest/content/harvest-tools.html
Software tools archiving and postprocessing for reference-compressed genomic multi-alignments. It is used for creating and interfacing with Gingr files, which are archives that the Harvest Suite uses to store reference-compressed multi-alignments, phylogenetic trees, filtered variants and annotations.
Proper citation: Harvest-tools (RRID:SCR_016132) Copy
http://atlasgeneticsoncology.org/
Online journal and database devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. Its aim is to cover the entire field under study and it presents concise and updated reviews (cards) or longer texts (deep insights) concerning topics in cancer research and genomics.
Proper citation: Atlas of Genetics and Cytogenetics in Oncology and Haematology (RRID:SCR_007199) Copy
http://igs-server.cnrs-mrs.fr/mgdb/Rickettsia/
THIS RESOURCE IS NO LONGER IN SERVICE, documented August 18, 2016. Rickettsia are obligate intracellular bacteria living in arthropods. They occasionally cause diseases in humans. To understand their pathogenicity, physiologies and evolutionary mechanisms, RicBase is sequencing different species of Rickettsia. Up to now we have determined the genome sequences of R. conorii, R. felis, R. bellii, R. africae, and R. massiliae. The RicBase aims to organize the genomic data to assist followup studies of Rickettsia. This website contains information on R. conorii and R. prowazekii. A R. conorii and R. prowazekii comparative genome map is also available. Images of genome maps, dendrogram, and sequence alignment allow users to gain a visualization of the diagrams.
Proper citation: Rickettsia Genome Database (RRID:SCR_007102) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/genomic_control/genomic_control.htm
Software application where GC implements the genomic control models. GCF implements the basic Genomic Control approach, but adjusts the p-values for uncertainty in the estimated effect of substructure. This approach is preferable if a large number of tests will be evaluated because it provides a more accurrate assessment of the significance level for small p-values. (entry from Genetic Analysis Software)
Proper citation: GC/GCF (RRID:SCR_009075) Copy
http://wpicr.wpic.pitt.edu/WPICCompGen/newcovibd/covibd.htm
Software application that refines linkage analysis of affected sibpairs by considering attributes or environmental exposures thought to affect disease liability. This refinement utilizes a mixture model in which a disease mutation segregates in only a fraction of the sibships, with the rest of the sibships unlinked. Covariate information is used to predict membership within the two groups corresponding to the linked and unlinked sibships. The pre-clustering model uses covariate information to first form two probabilistic clusters and then tests for excess IBD-sharing in the clusters. The Cov-IBD model determines probabilistic group membership by joint consideration of covariate and IBD values. (entry from Genetic Analysis Software)
Proper citation: COVIBD (RRID:SCR_009155) Copy
http://www.dkfz.de/en/epidemiologie-krebserkrankungen/software/software.html
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 24,2023. Software program that performs estimation of power and sample sizes required to detect genetic and environmental main, as well as gene-environment interaction (GxE) effects in indirect matched case-control studies (1:1 matching). When the hypothesis of GxE is tested, power/sample size will be estimated for the detection of GxE, as well as for the detection of genetic and environmental marginal effects. Furthermore, power estimation is implemented for the joint test of genetic marginal and GxE effects (Kraft P et al., 2007). Power and sample size estimations are based on Gauderman''s (2002) asymptotic approach for power and sample size estimations in direct studies of GxE. Hardy-Weinberg equilibrium and independence of genotypes and environmental exposures in the population are assumed. The estimates are based on genotypic codes (G=1 (G=0) for individuals who carry a (non-) risk genotype), which depend on the mode of inheritance (dominant, recessive, or multiplicative). A conditional logistic regression approach is used, which employs a likelihood-ratio test with respect to a biallelic candidate SNP, a binary environmental factor (E=1 (E=0) in (un)exposed individuals), and the interaction between these components. (entry from Genetic Analysis Software)
Proper citation: PIAGE (RRID:SCR_013124) Copy
http://www.imperial.ac.uk/research/animallectins
Resource presents information about animal lectins involved in various sugar recognition processes.
Proper citation: genomics resource for animal lectins (RRID:SCR_018122) Copy
http://www.nervenet.org/main/dictionary.html
A mouse-related portal of genomic databases and tables of mouse brain data. Most files are intended for you to download and use on your own personal computer. Most files are available in generic text format or as FileMaker Pro databases. The server provides data extracted and compiled from: The 2000-2001 Mouse Chromosome Committee Reports, Release 15 of the MIT microsatellite map (Oct 1997), The recombinant inbred strain database of R.W. Elliott (1997) and R. W. Williams (2001), and the Map Manager and text format chromosome maps (Apr 2001). * LXS genotype (Excel file): Updated, revised positions for 330 markers genotyped using a panel of 77 LXS strain. * MIT SNP DATABASE ONLINE: Search and sort the MIT Single Nucleotide Polymorphism (SNP) database ONLINE. These data from the MIT-Whitehead SNP release of December 1999. * INTEGRATED MIT-ROCHE SNP DATABASE in EXCEL and TEXT FORMATS (1-3 MB): Original MIT SNPs merged with the new Roche SNPs. The Excel file has been formatted to illustrate SNP haplotypes and genetic contrasts. Both files are intended for statistical analyses of SNPs and can be used to test a method outlined in a paper by Andrew Grupe, Gary Peltz, and colleagues (Science 291: 1915-1918, 2001). The Excel file includes many useful equations and formatting that will help in navigating through this large database and in testing the in silico mapping method. * Use of inbred strains for the study of individual differences in pain related phenotypes in the mouse: Elissa J. Chesler''s 2002 dissertation, discussing issues relevant to the integration of genomic and phenomic data from standard inbred strains including genetic interactions with laboratory environmental conditions and the use of various in silico inbred strain haplotype based mapping algorithms for QTL analysis. * SNP QTL MAPPER in EXCEL format (572 KB, updated January 2002 by Elissa Chesler): This Excel workbook implements the Grupe et al. mapping method and outputs correlation plots. The main spreadsheet allows you to enter your own strain data and compares them to haplotypes. Be very cautious and skeptical when using this spreadsheet and the technique. Read all of the caveates. This excel version of the method was developed by Elissa Chesler. This updated version (Jan 2002) handles missing data. * MIT SNP Database (tab-delimited text format): This file is suitable for manipulation in statistics and spreadsheet programs (752 KB, Updated June 27, 2001). Data have been formatted in a way that allows rapid acquisition of the new data from the Roche Bioscience SNP database. * MIT SNP Database (FileMaker 5 Version): This is a reformatted version of the MIT Single Nucleotide Polymorphism (SNP) database in FileMaker 5 format. You will need a copy of this application to open the file (Mac and Windows; 992 KB. Updated July 13, 2001 by RW). * Gene Mapping and Map Manager Data Sets: Genetic maps of mouse chromosomes. Now includes a 10th generation advanced intercross consisting of 500 animals genetoyped at 340 markers. Lots of older files on recombinant inbred strains. * The Portable Dictionary of the Mouse Genome, 21,039 loci, 17,912,832 bytes. Includes all 1997-98 Chromosome Committee Reports and MIT Release 15. * FullDict.FMP.sit: The Portable Dictionary of the Mouse Genome. This large FileMaker Pro 3.0/4.0 database has been compressed with StuffIt. The Dictionary of the Mouse Genome contains data from the 1997-98 chromosome committee reports and MIT Whitehead SSLP databases (Release 15). The Dictionary contains information for 21,039 loci. File size = 4846 KB. Updated March 19, 1998. * MIT Microsatellite Database ONLINE: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. ONLINE. Updated July 12, 2001. * MIT Microsatellite Database: A database of MIT microsatellite loci in the mouse. Use this FileMaker Pro database with OurPrimersDB. MITDB is a subset of the Portable Dictionary of the Mouse Genome. File size = 3.0 MB. Updated March 19, 1998. * OurPrimersDB: A small database of primers. Download this database if you are using numerous MIT primers to map genes in mice. This database should be used in combination with the MITDB as one part of a relational database. File size = 149 KB. Updated March 19, 1998. * Empty copy (clone) of the Portable Dictionary in FileMaker Pro 3.0 format. Download this file and import individual chromosome text files from the table into the database. File size = 231 KB. Updated March 19, 1998. * Chromosome Text Files from the Dictionary: The table lists data on gene loci for individual chromosomes.
Proper citation: Mouse Genome Databases (RRID:SCR_007147) Copy
http://www.genoscope.cns.fr/externe/tetraodon/
The initial objective of Genoscope was to compare the genomic sequences of this fish to that of humans to help in the annotation of human genes and to estimate their number. This strategy is based on the common genetic heritage of the vertebrates: from one species of vertebrate to another, even for those as far apart as a fish and a mammal, the same genes are present for the most part. In the case of the compact genome of Tetraodon, this common complement of genes is contained in a genome eight times smaller than that of humans. Although the length of the exons is similar in these two species, the size of the introns and the intergenic sequences is greatly reduced in this fish. Furthermore, these regions, in contrast to the exons, have diverged completely since the separation of the lineages leading to humans and Tetraodon. The Exofish method, developed at Genoscope, exploits this contrast such that the conserved regions which can be identified by comparing genomic sequences of the two species, correspond only to coding regions. Using preliminary sequencing results of the genome of Tetraodon in the year 2000, Genoscope evaluated the number of human genes at about 30,000, whereas much higher estimations were current. The progress of the annotation of the human genome has since supported the Genoscope hypothesis, with values as low as 22,000 genes and a consensus of around 25,000 genes. The sequencing of the Tetraodon genome at a depth of about 8X, carried out as a collaboration between Genoscope and the Whitehead Institute Center for Genome Research (now the Broad Institute), was finished in 2002, with the production of an assembly covering 90 of the euchromatic region of the genome of the fish. This has permitted the application of Exofish at a larger scale in comparisons with the genome of humans, but also with those of the two other vertebrates sequenced at the time (Takifugu, a fish closely related to Tetraodon, and the mouse). The conserved regions detected in this way have been integrated into the annotation procedure, along with other resources (cDNA sequences from Tetraodon and ab initio predictions). Of the 28,000 genes annotated, some families were examined in detail: selenoproteins, and Type 1 cytokines and their receptors. The comparison of the proteome of Tetraodon with those of mammals has revealed some interesting differences, such as a major diversification of some hormone systems and of the collagen molecules in the fish. A search for transposable elements in the genomic sequences of Tetraodon has also revealed a high diversity (75 types), which contrasts with their scarcity; the small size of the Tetraodon genome is due to the low abundance of these elements, of which some appear to still be active. Another factor in the compactness of the Tetraodon genome, which has been confirmed by annotation, is the reduction in intron size, which approaches a lower limit of 50-60 bp, and which preferentially affects certain genes. The availability of the sequences from the genomes of humans and mice on one hand, and Takifugu and Tetraodon on the other, provide new opportunities for the study of vertebrate evolution. We have shown that the level of neutral evolution is higher in fish than in mammals. The protein sequences of fish also diverge more quickly than those of mammals. A key mechanism in evolution is gene duplication, which we have studied by taking advantage of the anchoring of the majority of the sequences from the assembly on the chromosomes. The result of this study speaks strongly in favor of a whole genome duplication event, very early in the line of ray-finned fish (Actinopterygians). An even stronger evidence came from synteny studies between the genomes of humans and Tetraodon. Using a high-resolution synteny map, we have reconstituted the genome of the vertebrate which predates this duplication - that is, the last common ancestor to all bony vertebrates (most of the vertebrates apart from cartilaginous fish and agnaths like lamprey). This ancestral karyotype contains 12 chromosomes, and the 21 Tetraodon chromosomes derive from it by the whole genome duplication and a surprisingly small number of interchromosomal rearrangements. On the contrary, exchanges between chromosomes have been much more frequent in the lineage that leads to humans. Sponsors: The project was supported by the Consortium National de Recherche en Genomique and the National Human Genome Research Institute.
Proper citation: Tetraodon Genome Browser (RRID:SCR_007079) Copy
http://www.broadinstitute.org/
Biomedical and genomic research center located in Cambridge, Massachusetts, United States. Nonprofit research organization under the name Broad Institute Inc., and is partners with Massachusetts Institute of Technology, Harvard University, and the five Harvard teaching hospitals. Dedicated to advance understanding of biology and treatment of human disease to improve human health.
Proper citation: Broad Institute (RRID:SCR_007073) Copy
Project focused on cerebral aneurysms and provides integrated decision support system to assess risk of aneurysm rupture in patients and to optimize their treatments. IT infrastructure has been developeded for management and processing of vast amount of heterogeneous data acquired during diagnosis.
Proper citation: aneurIST (RRID:SCR_007427) Copy
http://human.brain-map.org/static/brainexplorer
Multi modal atlas of human brain that integrates anatomic and genomic information, coupled with suite of visualization and mining tools to create open public resource for brain researchers and other scientists. Data include magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), histology and gene expression data derived from both microarray and in situ hybridization (ISH) approaches. Brain Explorer 2 is desktop software application for viewing human brain anatomy and gene expression data in 3D.
Proper citation: Allen Human Brain Atlas (RRID:SCR_007416) Copy
https://cran.r-project.org/web/packages/tdthap/index.html
Software package for TDT with extended haplotypes in the R language. R is the public domain dialect of S. It should be possible to port this library to the commercial Splus product. The main problem would be translation of the help files. (entry from Genetic Analysis Software)
Proper citation: R/TDTHAP (RRID:SCR_007625) Copy
http://locus.jouy.inra.fr/cgi-bin/lgbc/mapping/common/intro2.pl?BASE=goat
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. This website contains information about the mapping of the caprine genome. It contains loci list, phenes list, cartography, gene list, and other sequence information about goats. This website contains 731 loci, 271 genes, and 1909 homologue loci on 112 species. It also allows users to summit their own data for Goatmap. ARK-Genomics is not-for-profit and has collaborators from all over the world with an interest in farm animal genomics and genetics. ARK-Genomics was initially set up in 2000 with a grant awarded from the BBSRC IGF (Investigating Gene Function) initiative and from core resources of the Roslin Institute to provide a laboratory for automated analysis of gene expression using state-of-the-art genomic facilities. Since then, ARK-Genomics has expanded considerably, building up considerable expertise and resources.
Proper citation: GoatMap Database (RRID:SCR_008144) Copy
http://www.sanger.ac.uk/Projects/Microbes/
This website includes a list of projects that the Sanger Institute is currently working on or completed. All projects consist of the genomic sequencing of different bacteria. Each description of the bacteria includes its classification, a description, and the types of diseases that the bacteria is likely to cause. The Sanger Institute bacterial sequencing effort is concentrated on pathogens and model organisms. Data is accessible in a number of ways; for each organism there is a BLAST server, allowing users to search the sequences with their own query and retrieve the matching contigs. Sequences can also be downloaded directly by FTP. Data is accessible in a number of ways; for each organism there is a BLAST server, allowing you to search the sequences with your own query and retrieve the matching contigs. Sequences can also be downloaded directly by FTP. The primary sequence viewer and annotation tool, Artemis is available for download. This is a portable Java program which is used extensively within the Microbial Genomes group for the analysis and annotation of sequence data from cosmids to whole genomes. The Artemis Comparison Tool (ACT) is also useful for interactive viewing of the comparisons between large and small sequences.
Proper citation: Bacterial Genomes (RRID:SCR_008141) Copy
This is a blog about post genomic knowledge. The website''s goal is to make public datasets from the bioinformatics community available in RDF format via standard SPARQL endpoints.
Proper citation: Bio2RDF atlas of post genomic knowledge (RRID:SCR_007991) Copy
http://www.animalgenome.org/pigs/nagrp.html
Database and resources on the pig genome.
Proper citation: U.S. Pig Genome Project (RRID:SCR_008151) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.