Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
http://bejerano.stanford.edu/prism/public/html/
THIS RESOURCE IS NO LONGER IN SERVICE. Documented on May 5,2022.Tool that predicts interactions between transcription factors and their regulated genes from binding motifs. Understanding vertebrate development requires unraveling the cis-regulatory architecture of gene regulation. PRISM provides accurate genome-wide computational predictions of transcription factor binding sites for the human and mouse genomes, and integrates the predictions with GREAT to provide functional biological context. Together, accurate computational binding site prediction and GREAT produce for each transcription factor: 1. putative binding sites, 2. putative target genes, 3. putative biological roles of the transcription factor, and 4. putative cis-regulatory elements through which the factor regulates each target in each functional role., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: PRISM (Stanford database) (RRID:SCR_005375) Copy
http://fcon_1000.projects.nitrc.org/
Collection of resting state fMRI (R-fMRI) datasets from sites around world. It demonstrates open sharing of R-fMRI data and aims to emphasize aggregation and sharing of well-phenotyped datasets.
Proper citation: 1000 Functional Connectomes Project (RRID:SCR_005361) Copy
Tool for searching sequence databases for homologs of protein sequences, and for making protein sequence alignments. It implements methods using probabilistic models called profile hidden Markov models (profile HMMs). Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be significantly more accurate and more able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially as fast as BLAST.
Proper citation: Hmmer (RRID:SCR_005305) Copy
MicrobesOnline is designed specifically to facilitate comparative studies on prokaryotic genomes. It is an entry point for operon, regulons, cis-regulatory and network predictions based on comparative analysis of genomes. The portal includes over 1000 complete genomes of bacteria, archaea and fungi and thousands of expression microarrays from diverse organisms ranging from model organisms such as Escherichia coli and Saccharomyces cerevisiae to environmental microbes such as Desulfovibrio vulgaris and Shewanella oneidensis. To assist in annotating genes and in reconstructing their evolutionary history, MicrobesOnline includes a comparative genome browser based on phylogenetic trees for every gene family as well as a species tree. To identify co-regulated genes, MicrobesOnline can search for genes based on their expression profile, and provides tools for identifying regulatory motifs and seeing if they are conserved. MicrobesOnline also includes fast phylogenetic profile searches, comparative views of metabolic pathways, operon predictions, a workbench for sequence analysis and integration with RegTransBase and other microbial genome resources. The next update of MicrobesOnline will contain significant new functionality, including comparative analysis of metagenomic sequence data. Programmatic access to the database, along with source code and documentation, is available at http://microbesonline.org/programmers.html.
Proper citation: MicrobesOnline (RRID:SCR_005507) Copy
Bioinformatics Resource Center for invertebrate vectors. Provides web-based resources to scientific community conducting basic and applied research on organisms considered potential agents of biowarfare or bioterrorism or causing emerging or re-emerging diseases.
Proper citation: VectorBase (RRID:SCR_005917) Copy
Data analysis service to predict the function of your favorite genes and gene sets. Indexing 1,421 association networks containing 266,984,699 interactions mapped to 155,238 genes from 7 organisms. GeneMANIA interaction networks are available for download in plain text format. GeneMANIA finds other genes that are related to a set of input genes, using a very large set of functional association data. Association data include protein and genetic interactions, pathways, co-expression, co-localization and protein domain similarity. You can use GeneMANIA to find new members of a pathway or complex, find additional genes you may have missed in your screen or find new genes with a specific function, such as protein kinases. Your question is defined by the set of genes you input. If members of your gene list make up a protein complex, GeneMANIA will return more potential members of the protein complex. If you enter a gene list, GeneMANIA will return connections between your genes, within the selected datasets. GeneMANIA suggests annotations for genes based on Gene Ontology term enrichment of highly interacting genes with the gene of interest. GeneMANIA is also a gene recommendation system. GeneMANIA is also accessible via a Cytoscape plugin, designed for power users. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible
Proper citation: GeneMANIA (RRID:SCR_005709) Copy
ToppGene Suite is a one-stop portal for gene list enrichment analysis and candidate gene prioritization based on functional annotations and protein interactions network. ToppGene Suite is a one-stop portal for (i) gene list functional enrichment, (ii) candidate gene prioritization using either functional annotations or network analysis and (iii) identification and prioritization of novel disease candidate genes in the interactome. Functional annotation-based disease candidate gene prioritization uses a fuzzy-based similarity measure to compute the similarity between any two genes based on semantic annotations. The similarity scores from individual features are combined into an overall score using statistical meta-analysis.
Proper citation: ToppGene Suite (RRID:SCR_005726) Copy
https://portals.broadinstitute.org/cmap/
Collection of genome-wide transcriptional expression data from cultured human cells treated with bioactive small molecules and simple pattern-matching algorithms. camp aims to enable the discovery of functional connections between drugs, genes and diseases through the transitory feature of common gene-expression changes., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.
Proper citation: Connectivity Map 02 (RRID:SCR_015674) Copy
http://www.alliancegenome.org/
Organization that aims to develop and maintain sustainable genome information resources to promote understanding of the genetic and genomic basis of human biology, health, and disease. The Alliance is composed of FlyBase, Mouse Genome Database (MGD), the Gene Ontology Consortium (GOC), Saccharomyces Genome Database (SGD), Rat Genome Database (RGD), WormBase, and the Zebrafish Information Network (ZFIN).
Proper citation: Alliance of Genome Resources (RRID:SCR_015850) Copy
http://www.syngene.com/genesys-2/
Imaging software that works with G:BOX Chemi and PXi imaging systems to automatically or manually capture images. GeneSys also includes a database containing information about applications such as fluorescence, chemiluminescence and chemifluorescence.
Proper citation: GeneSys (RRID:SCR_015770) Copy
http://bioplex.hms.harvard.edu/
Database of cell lines with each expressing a tagged version of a protein from the ORFeome collection. The overarching project goal is to determine protein interactions for every member of the collection.
Proper citation: BioPlex (RRID:SCR_016144) Copy
Software that archives evidence collected from different sources, then analyzes and presents these data. Its data come from manually curated protein-protein interaction databases that have adhered to the IMEx consortium.
Proper citation: mentha (RRID:SCR_016148) Copy
Standard specification for organizing and describing outputs of neuroimaging experiments. Used to organize and describe neuroimaging and behavioral data by neuroscientific community as standard to organize and share data. BIDS prescribes file naming conventions and folder structure to store data in set of already existing file formats. Provides standardized templates to store associated metadata in form of Javascript Object Notation (JSON) and tab-separated value (TSV) files. Facilitates data sharing, metadata querying, and enables automatic data analysis pipelines. System to curate, aggregate, and annotate neuroimaging databases. Intended for magnetic resonance imaging data, magnetoencephalography data, electroencephalography data, and intracranial encephalography data.
Proper citation: Brain Imaging Data Structure (BIDs) (RRID:SCR_016124) Copy
http://mango.adult-neurogenesis.de
Database of genes concerning adult neurogenesis mapped to cell types and processes that have been curated from the literature. In its present state, the database is restricted to neurogenesis in the hippocampus.
Proper citation: Mammalian Adult Neurogenesis Gene Ontology (RRID:SCR_006176) Copy
The Deciphering Developmental Disorders (DDD) study aims to find out if using new genetic technologies can help doctors understand why patients get developmental disorders. To do this we have brought together doctors in the 23 NHS Regional Genetics Services throughout the UK and scientists at the Wellcome Trust Sanger Institute, a charitably funded research institute which played a world-leading role in sequencing (reading) the human genome. The DDD study involves experts in clinical, molecular and statistical genetics, as well as ethics and social science. It has a Scientific Advisory Board consisting of scientists, doctors, a lawyer and patient representative, and has received National ethical approval in the UK. Over the next few years, we are aiming to collect DNA and clinical information from 12,000 undiagnosed children in the UK with developmental disorders and their parents. The results of the DDD study will provide a unique, online catalogue of genetic changes linked to clinical features that will enable clinicians to diagnose developmental disorders. Furthermore, the study will enable the design of more efficient and cheaper diagnostic assays for relevant genetic testing to be offered to all such patients in the UK and so transform clinical practice for children with developmental disorders. Over time, the work will also improve understanding of how genetic changes cause developmental disorders and why the severity of the disease varies in individuals. The Sanger Institute will contribute to the DDD study by performing genetic analysis of DNA samples from patients with developmental disorders, and their parents, recruited into the study through the Regional Genetics Services. Using microarray technology and the latest DNA sequencing methods, research teams will probe genetic information to identify mutations (DNA errors or rearrangements) and establish if these mutations play a role in the developmental disorders observed in patients. The DDD initiative grew out of the groundbreaking DECIPHER database, a global partnership of clinical genetics centres set up in 2004, which allows researchers and clinicians to share clinical and genomic data from patients worldwide. The DDD study aims to transform the power of DECIPHER as a diagnostic tool for use by clinicians. As well as improving patient care, the DDD team will empower researchers in the field by making the data generated securely available to other research teams around the world. By assembling a solid resource of high-quality, high-resolution and consistent genomic data, the leaders of the DDD study hope to extend the reach of DECIPHER across a broader spectrum of disorders than is currently possible.
Proper citation: Deciphering Developmental Disorders (RRID:SCR_006171) Copy
http://brainvis.wustl.edu/wiki/index.php/Caret:About
Software package to visualize and analyze structural and functional characteristics of cerebral and cerebellar cortex in humans, nonhuman primates, and rodents. Runs on Apple (Mac OSX), Linux, and Microsoft Windows operating systems.
Proper citation: Computerized Anatomical Reconstruction and Editing Toolkit (RRID:SCR_006260) Copy
FungiDB is a database for functional and evolutionary comparison of fungal genomes. FungiDB is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org). FungiDB uses the same infrastructure and user interface as EuPathDB, which allows for sophisticated and integrated searches to be performed using an intuitive graphical system. The current release of FungiDB contains genome sequence and annotation from 18 species spanning several fungal classes, including the Ascomycota classes, Eurotiomycetes, Sordariomycetes, Saccharomycetes and the Basidiomycota orders, Pucciniomycetes and Tremellomycetes, and the basal "Zygomycete" lineage Mucormycotina. Additionally, FungiDB contains cell cycle microarray data, hyphal growth RNA-sequence data and yeast two hybrid interaction data. The underlying genomic sequence and annotation combined with functional data, additional data from the FungiDB standard analysis pipeline and the ability to leverage orthology provides a powerful resource for in silico experimentation.
Proper citation: FungiDB (RRID:SCR_006013) Copy
http://equilibrator.weizmann.ac.il/
Web interface designed for thermodynamic analysis of biochemical systems. eQuilibrator enables free-text search for biochemical compounds and reactions and provides thermodynamic estimates for both in a variety of conditions. It can provide estimates for compounds in the KEGG database, and individual compounds and enzymes can be searched for by their common names (water, glucosamine, hexokinase). Reactions can be entered in a free-text format that eQuilibrator parses automatically. eQuilibrator also allows manipulation of the conditions of a reaction - pH, ionic strength, and reactant and product concentrations.
Proper citation: eQuilibrator (RRID:SCR_006011) Copy
Collects, maintains and distributes Drosophila melanogaster strains for research. Emphasis is placed on genetic tools that are useful to a broad range of investigations. These include basic stocks of flies used in genetic analysis such as marker, balancer, mapping, and transposon-tagging strains; mutant alleles of identified genes, including a large set of transposable element insertion alleles; defined sets of deficiencies and a variety of other chromosomal aberrations; engineered lines for somatic and germline clonal analysis; GAL4 and UAS lines for targeted gene expression; enhancer trap and lacZ-reporter strains with defined expression patterns for marking tissues; and a collection of transposon-induced lethal mutations.
Proper citation: Bloomington Drosophila Stock Center (RRID:SCR_006457) Copy
A federated data sharing platform and infrastructure that provides access to real-time clinical, imaging and biospecimen data across jurisdictions, institutions and diseases. The web-based platform provides a secure infrastructure that advances health research by linking privacy-protected and ethically approved data among a wide network of health collaborators. Access to de-identified health records data is granted to authorized researchers after an application process so patient privacy and intellectual property are protected. BioGrid Australia''s approved researchers are provided access to multiple institutional databases, via the BioGrid interface, preventing gaps in patient records and research analysis. This legal and ethical arrangement with participating collaborators allows BioGrid to connect data through a common platform where data governance and access is managed by a highly skilled team. Data governance, security and ethics are at the core of BioGrid''s federated data sharing platform that securely links patient level clinical, biospecimen, genetic and imaging data sets across multiple sites and diseases for the purpose of medical research. BioGrid''s infrastructure and data management strategies address the increasing need by authorized researchers to dynamically extract and analyze data from multiple sources whilst protecting patient privacy. BioGrid has the capability to link data with other datasets, produce tailored reports for auditing and reporting and provide statistical analysis tools to conduct more advanced research analysis. In the health sector, BioGrid is a trusted independent virtual real-time data repository. Government investment in BioGrid has facilitated a combination of technology, collaboration and ethics approval processes for data sharing that exist nowhere else in the world.
Proper citation: BioGrid Australia (RRID:SCR_006334) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.