Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 12 showing 221 ~ 240 out of 776 results
Snippet view Table view Download 776 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_001748

    This resource has 50+ mentions.

http://www.animalgenome.org/cgi-bin/QTLdb/index

Database of trait mapping data, i.e. QTL (phenotype / expression, eQTL), candidate gene and association data (GWAS) and copy number variations (CNV) mapped to livestock animal genomes, to facilitate locating and comparing discoveries within and between species. New data and database tools are continually developed to align various trait mapping data to map-based genome features, such as annotated genes. QTLdb is open to house QTL/association date from other animal species where feasible. Most scientific journals require that any original QTL/association data be deposited into public databases before paper may be accepted for publication. User curator accounts are provided for direct data deposit. Users can download QTLdb data from each species or individual chromosome.

Proper citation: Animal QTLdb (RRID:SCR_001748) Copy   


http://www.sanbi.ac.za/resources/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 23, 2022. The South African National Bioinformatics Institute delivers biomedical discovery appropriate to both international and African context. Researchers at SANBI perform the highest level of research and provide excellence in education. Research at SANBI has set well recognized milestones in the field of computational biology. The tools and techniques used have not only been developed but also implemented across heterogeneous domains of advanced research. Local and international efforts have driven our discoveries. Until recently, the core of SANBIs research has focused upon gene expression biology. Methods developed and applied at SANBI revolve around a greater understanding of the underlying causes of diseases. SANBI approaches the problem by comparison of genes, genomes and transcriptomes. It uses computational gene expression biology to create novel biological insights and to provide biomarkers for experimental validation. It also performs analysis of human genome variation, transcriptional diversity on both the expression and splicing level and the unravelling of transcriptional regulatory networks. Resources - Hinv, STACKdb, Malaria resources and Trypanosome databases are available for on-line seaching. - SANBI offers WCD, STACKdb, stackPACK and eVOC and the eVOKE viewer as tools that can be downloaded. Sponsors: SANBI receives funding and support from a range of organisations in South Africa and Internationally. Organisations currently supporting SANBI include: South Africa * South African Medical Research Council * South African AIDS Vaccine Initiative * National Bioinformatics Network * National Research Foundation * Claude Leon Foundation * International Business Machines Inc. Europe * European Unions 6th Framework Programme * World Health Organization USA * US National Institutes of Health * Fogarty International Centre * Ludwig Institute for Cancer Research

Proper citation: South African National Bioinformatics Institute: Resources (RRID:SCR_001867) Copy   


http://www.doe-mbi.ucla.edu/

The UCLA-DOE Institute for Genomics and Proteomics carries out research in bioenergy, structural biology, genomics and proteomics, consistent with the research mission of the United States Department of Energy. Major interests of the 12 Principal Investigators and 9 Associate Members include systems approaches to organisms, structural biology, bioinformatics, and bioenergetic systems. The Institute sponsors 5 Core Technology Centers, for X-ray and NMR structural determination, bioinformatics and computation, protein expression and purification, and biochemical instrumentation. Services offered by this Institute: - Databases: * DIP (The Database of Interacting Proteins): The DIPTM database catalogs experimentally determined interactions between proteins. It combines information from a variety of sources to create a single, consistent set of protein-protein interactions. * ProLinks Database of Functional Linkages: The Prolinks database is a collection of inference methods used to predict functional linkages between proteins. These methods include the Phylogenetic Profile method which uses the presence and absence of proteins across multiple genomes to detect functional linkages; the Gene Cluster method, which uses genome proximity to predict functional linkage; Rosetta Stone, which uses a gene fusion event in a second organism to infer functional relatedness; and the Gene Neighbor method, which uses both gene proximity and phylogenetic distribution to infer linkage. - Data-to-Structure Servers: * SAVEs Structure Verification Server * Merohedral Twinning Test Server * SER Surface Entropy Reduction Server * VERIFY3D Structure Verification Server * ERRAT Structure Verification Server - Structure-to-Function Servers: * ProKnow Protein Functionator * Hot Patch Functional Site Locator

Proper citation: University of California at Los Angeles - Department of Energy Institute for Genomics and Proteomics (RRID:SCR_001921) Copy   


http://meme-suite.org/

Suite of motif-based sequence analysis tools to discover motifs using MEME, DREME (DNA only) or GLAM2 on groups of related DNA or protein sequences; search sequence databases with motifs using MAST, FIMO, MCAST or GLAM2SCAN; compare a motif to all motifs in a database of motifs; associate motifs with Gene Ontology terms via their putative target genes, and analyze motif enrichment using SpaMo or CentriMo. Source code, binaries and a web server are freely available for noncommercial use.

Proper citation: MEME Suite - Motif-based sequence analysis tools (RRID:SCR_001783) Copy   


  • RRID:SCR_001815

    This resource has 50+ mentions.

http://sammeth.net/confluence/display/ASTA/2+-+Download

Tool that extracts and displays alternative splicing (AS) events from a given genomic annotation of exon-intron gene coordinates. By comparing all given transcripts, it detects the variations in their splicing structure and identifies all AS events (like exon skipping, alternate donor, etc) by assigning to each of them an AS code. It provides a visual summary of the AS landscape in the analyzed dataset, the possibility to browse the results on the UCSC website or to download them in GTF or ASTA format. You can use AStalavista for any genome by providing your own annotation set, the identifier of your gene(s) of interest, or analyze the AS landscape of reference annotation datasets like Gencode, RefSeq, Ensembl, FlyBase, etc.

Proper citation: AStalavista (RRID:SCR_001815) Copy   


  • RRID:SCR_002148

    This resource has 100+ mentions.

http://compbio.dfci.harvard.edu/tgi/

THIS RESOURCE IS NO LONGER IN SERVICE, documented May 10, 2017. A pilot effort that has developed a centralized, web-based biospecimen locator that presents biospecimens collected and stored at participating Arizona hospitals and biospecimen banks, which are available for acquisition and use by researchers. Researchers may use this site to browse, search and request biospecimens to use in qualified studies. The development of the ABL was guided by the Arizona Biospecimen Consortium (ABC), a consortium of hospitals and medical centers in the Phoenix area, and is now being piloted by this Consortium under the direction of ABRC. You may browse by type (cells, fluid, molecular, tissue) or disease. Common data elements decided by the ABC Standards Committee, based on data elements on the National Cancer Institute''s (NCI''s) Common Biorepository Model (CBM), are displayed. These describe the minimum set of data elements that the NCI determined were most important for a researcher to see about a biospecimen. The ABL currently does not display information on whether or not clinical data is available to accompany the biospecimens. However, a requester has the ability to solicit clinical data in the request. Once a request is approved, the biospecimen provider will contact the requester to discuss the request (and the requester''s questions) before finalizing the invoice and shipment. The ABL is available to the public to browse. In order to request biospecimens from the ABL, the researcher will be required to submit the requested required information. Upon submission of the information, shipment of the requested biospecimen(s) will be dependent on the scientific and institutional review approval. Account required. Registration is open to everyone.. Documented on August 19,2019.The goal of The Gene Index Project is to use the available Expressed Sequence Transcript (EST) and gene sequences, along with the reference genomes wherever available, to provide an inventory of likely genes and their variants and to annotate these with information regarding the functional roles played by these genes and their products. The promise of genome projects has been a complete catalog of genes in a wide range of organisms. While genome projects have been successful in providing reference genome sequences, the problem of finding genes and their variants in genomic sequence remains an ongoing challenge. TGI has created an inventory that contains genes and their variants together with description. In addition, this resource is attempting to use these catalogs to find links between genes and pathways in different species and to provide lists of features within completed genomes that can aid in the understanding of how gene expression is regulated. DATABASES *Eukaryotic Gene Orthologues (formerly known as TOGA - TIGR Orthologous Gene Alignment): Eukaryotic Gene Orthologues (EGO) at DFGI are generated by pair-wise comparison between the Tentative Consensus (TC) sequences that comprise the Dana Farber Gene Indices from individual organisms. The reciprocal pairs of the best match were clustered into individual groups and multiple sequence alignments were displayed for each group. *GeneChip Oncology Database (GCOD):Cancer gene expression database is a collection of publicly available microarray expression data on Affymetrix GeneChip Arrays related to human cancers. Currently only datasets with available raw data (Affymetrix .CEL files) are processed. All processed datasets were subjected to extensive manual curation, uniform processing and consistent quality control. You can browse the experiments in our collection, perform statistical analysis, and download processed data; or to search gene expression profiles using Entrez gene symbol, Unigene ID, or Affymetrix probeset ID. *Gene Indices: As of July 1, 2008, there are 111 publicly available gene indices. They are separated into 4 categories for better organization and easier access. Animal: 41, Plant: 45, Protist: 15, Fungal: 10 *Genomic Maps: Human, mouse, rat, chicken, drosophila melanogaster, zebrafish, mosquito, caenorhabditis elegans, Arabidopsis thaliana, rice, yeast, fission yeast Dana-Farber Cancer Institute (DFCI) Gene Indices Software Tools: *TGI Clustering tools (TGICL): a software system for fast clustering of large EST datasets. *GICL: this package contains the scripts and all the necessary pre-compiled binaries for 32bit Linux systems. *clview: an assembly file viewer. *SeqClean:a script for automated trimming and validation of ESTs or other DNA sequences by screening for various contaminants, low quality and low-complexity sequences. *cdbfasta/cdbyank: fast indexing/retrieval of fasta records from flat file databases. *DAS/XML Genomic Viewer The Genomic viewer borrows modules from http://www.biodas.org (lstein (at) cshl.org) & http://webreference.com.

Proper citation: Gene Index Project (RRID:SCR_002148) Copy   


  • RRID:SCR_002047

    This resource has 100+ mentions.

http://www.aspgd.org/

Database of genetic and molecular biological information about the filamentous fungi of the genus Aspergillus including information about genes and proteins of Aspergillus nidulans and Aspergillus fumigatus; descriptions and classifications of their biological roles, molecular functions, and subcellular localizations; gene, protein, and chromosome sequence information; tools for analysis and comparison of sequences; and links to literature information; as well as a multispecies comparative genomics browser tool (Sybil) for exploration of orthology and synteny across multiple sequenced Sgenus species. Also available are Gene Ontology (GO) and community resources. Based on the Candida Genome Database, the Aspergillus Genome Database is a resource for genomic sequence data and gene and protein information for Aspergilli. Among its many species, the genus contains an excellent model organism (A. nidulans, or its teleomorph Emericella nidulans), an important pathogen of the immunocompromised (A. fumigatus), an agriculturally important toxin producer (A. flavus), and two species used in industrial processes (A. niger and A. oryzae). Search options allow you to: *Search AspGD database using keywords. *Find chromosomal features that match specific properties or annotations. *Find AspGD web pages using keywords located on the page. *Find information on one gene from many databases. *Search for keywords related to a phenotype (e.g., conidiation), an allele (such as veA1), or an experimental condition (e.g., light). Analysis and Tools allow you to: *Find similarities between a sequence of interest and Aspergillus DNA or protein sequences. *Display and analyze an Aspergillus sequence (or other sequence) in many ways. *Navigate the chromosomes set. View nucleotide and protein sequence. *Find short DNA/protein sequence matches in Aspergillus. *Design sequencing and PCR primers for Aspergillus or other input sequences. *Display the restriction map for a Aspergillus or other input sequence. *Find similarities between a sequence of interest and fungal nucleotide or protein sequences. AspGD welcomes data submissions.

Proper citation: ASPGD (RRID:SCR_002047) Copy   


http://mips.gsf.de/genre/proj/yeast/index.jsp

The MIPS Comprehensive Yeast Genome Database (CYGD) aims to present information on the molecular structure and functional network of the entirely sequenced, well-studied model eukaryote, the budding yeast Saccharomyces cerevisiae. In addition, the data of various projects on related yeasts are used for comparative analysis.

Proper citation: CYGD - Comprehensive Yeast Genome Database (RRID:SCR_002289) Copy   


http://microbes.ucsc.edu/cgi-bin/hgGateway?db=neisMeni_MC58_1

Portal contains detailed information for Neisseria meningitidis MC58. Information include DNA molecule summary, primary annotation summary, and taxonomy. It is a tool that allows the researcher to access all of the bacterial genome sequences completed to date. Users may access information on all of the bacterial genomes or any subset of them. Information in the website about its DNA molecule includes: total number of DNA molecules, total size of all DNA molecules, number of primary annotation coding bases, and number of G + C bases. Its primary annotation summary include: total genes, protein coding genes, tRNA genes, and rRNA genes. Sponsors: The CMR was previously funded by two grants, one from the U.S. Department of Energy (DOE) and one from the National Science Foundation (NSF). It is currently partially funded by a Microbial Sequence Center (MSC) grant from the National Institute of Allergy and Infectious Diseases (NIAID)

Proper citation: Neisseria meningitidis MC58 Genome Page (RRID:SCR_002200) Copy   


  • RRID:SCR_002279

    This resource has 50+ mentions.

http://insulatordb.uthsc.edu/

A comprehensive collection of experimentally determined and computationally predicted CCCTC-binding factor (CTCF) binding sites (CTCFBS) from the literature. The database is designed to facilitate the studies on insulators and their roles in demarcating functional genomic domains. The CTCFBS Prediction Tool allows users to scan sequences for the single best match to CTCF position weight matrices. Currently (March 2014), the database contains almost 15 million experimentally determined CTCF binding sites across several species. CTCF binding sites were collected from published papers containing CTCF binding sites identified using ChIPSeq or similar methods, data from the ENCODE project, and a set of approximately 100 manually curated binding sites identified by low-throughput experiments. Users can browse insulator sequence features, function annotations, genomic contexts including histone methylation profiles, flanking gene expression patterns and orthologous regions in other mammalian genomes. Users can also retrieve data by text search, sequence search and genomic range search.

Proper citation: CTCFBSDB (RRID:SCR_002279) Copy   


http://www.ncbi.nlm.nih.gov/HTGS/

Database of high-throughput genome sequences from large-scale genome sequencing centers, including unfinished and finished sequences. It was created to accommodate a growing need to make unfinished genomic sequence data rapidly available to the scientific community in a coordinated effort among the International Nucleotide Sequence databases, DDBJ, EMBL, and GenBank. Sequences are prepared for submission by using NCBI's software tools Sequin or tbl2asn. Each center has an FTP directory into which new or updated sequence files are placed. Sequence data in this division are available for BLAST homology searches against either the htgs database or the month database, which includes all new submissions for the prior month. Unfinished HTG sequences containing contigs greater than 2 kb are assigned an accession number and deposited in the HTG division. A typical HTG record might consist of all the first-pass sequence data generated from a single cosmid, BAC, YAC, or P1 clone, which together make up more than 2 kb and contain one or more gaps. A single accession number is assigned to this collection of sequences, and each record includes a clear indication of the status (phase 1 or 2) plus a prominent warning that the sequence data are unfinished and may contain errors. The accession number does not change as sequence records are updated; only the most recent version of a HTG record remains in GenBank.

Proper citation: High Throughput Genomic Sequences Division (RRID:SCR_002150) Copy   


http://www.ark-genomics.org/

Portal for studies of genome structure and genetic variation, gene expression and gene function. Provides services including DNA sequencing of model and non-model genomes using both Next Generation and Sanger sequencing , Gene expression analysis using both microarrays and Next Generation Sequencing, High throughput genotyping of SNP and copy number variants, Data collection and analysis supported in-house high performance computing facilities and expertise, Extensive EST clone collections for a number of animal species, all of commercially available microarray tools from Affymetrix, Illumina, Agilent and Nimblegen, Parentage testing using microsatellites and smaller SNP panels. ARK-Genomics has developed network of researchers whom they support through each stage of their genomics research, from grant application, experimental design and technology selection, performing wet laboratory protocols, through to analysis of data often in conjunction with commercial partners.

Proper citation: ARK-Genomics: Centre for Functional Genomics (RRID:SCR_002214) Copy   


  • RRID:SCR_002359

    This resource has 500+ mentions.

http://www.ddbj.nig.ac.jp

Maintains and provides archival, retrieval and analytical resources for biological information. Central DDBJ resource consists of public, open-access nucleotide sequence databases including raw sequence reads, assembly information and functional annotation. Database content is exchanged with EBI and NCBI within the framework of the International Nucleotide Sequence Database Collaboration (INSDC). In 2011, DDBJ launched two new resources: DDBJ Omics Archive and BioProject. DOR is archival database of functional genomics data generated by microarray and highly parallel new generation sequencers. Data are exchanged between the ArrayExpress at EBI and DOR in the common MAGE-TAB format. BioProject provides organizational framework to access metadata about research projects and data from projects that are deposited into different databases.

Proper citation: DNA DataBank of Japan (DDBJ) (RRID:SCR_002359) Copy   


  • RRID:SCR_002474

    This resource has 500+ mentions.

http://www.ncbi.nlm.nih.gov/genome

Database that organizes information on genomes including sequences, maps, chromosomes, assemblies, and annotations in six major organism groups: Archaea, Bacteria, Eukaryotes, Viruses, Viroids, and Plasmids. Genomes of over 1,200 organisms can be found in this database, representing both completely sequenced organisms and those for which sequencing is in progress. Users can browse by organism, and view genome maps and protein clusters. Links to other prokaryotic and archaeal genome projects, as well as BLAST tools and access to the rest of the NCBI online resources are available.

Proper citation: NCBI Genome (RRID:SCR_002474) Copy   


  • RRID:SCR_002817

    This resource has 100+ mentions.

http://www.genomesonline.org/

Database of information regarding genome and metagenome sequencing projects, and their associated metadata, around the world. It also provides information related to organism properties such as phenotype, ecotype and disease. Both complete and ongoing projects, along with their associated metadata, can be accessed. Users can also register, annotate and publish genome and metagenome data.

Proper citation: Genomes Online Database (RRID:SCR_002817) Copy   


http://genespeed.ccf.org/home/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 16, 2013. Database and customized tools to study the PFAM protein domain content of the transcriptome for all expressed genes of Homo sapiens, Mus musculus, Drosophila melanogaster, and Caenorhabditis elegans tethered to both a genomics array repository database and a range of external information resources. GeneSpeed has merged information from several existing data sets including the Gene Ontology Consortium, InterPro, Pfam, Unigene, as well as micro-array datasets. GeneSpeed is a database of PFAM domain homology contained within Unigene. Because Unigene is a non-redundant dbEST database, this provides a wide encompassing overview of the domain content of the expressed transcriptome. We have structured the GeneSpeed Database to include a rich toolset allowing the investigator to study all domain homology, no matter how remote. As a result, homology cutoff score decisions are determined by the scientist, not by a computer algorithm. This quality is one of the novel defining features of the GeneSpeed database giving the user complete control of database content. In addition to a domain content toolset, GeneSpeed provides an assortment of links to external databases, a unique and manually curated Transcription Factor Classification list, as well as links to our newly evolving GeneSpeed BetaCell Database. GeneSpeed BetaCell is a micro-array depository combined with custom array analysis tools created with an emphasis around the meta analysis of developmental time series micro-array datasets and their significance in pancreatic beta cells.

Proper citation: GeneSpeed- A Database of Unigene Domain Organization (RRID:SCR_002779) Copy   


  • RRID:SCR_002657

    This resource has 100+ mentions.

https://cghub.ucsc.edu/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on March 17, 2022. A secure repository for storing, cataloging, and accessing cancer genome sequences, alignments, and mutation information from the Cancer Genome Atlas (TCGA) consortium and related projects. CGHub gives scientific researchers the statistical power of large cancer genome datasets to attack the molecular complexity of cancer.

Proper citation: Cancer Genomics Hub (RRID:SCR_002657) Copy   


  • RRID:SCR_002834

    This resource has 10+ mentions.

http://www.greenphyl.org/

A database designed for plant comparative and functional genomics based on complete genomes. It comprises complete proteome sequences from the major phylum of plant evolution. The clustering of these proteomes was performed to define a consistent and extensive set of homeomorphic plant families. Based on this, lists of gene families such as plant or species specific families and several tools are provided to facilitate comparative genomics within plant genomes. The analyses follow two main steps: gene family clustering and phylogenomic analysis of the generated families. Once a group of sequences (cluster) is validated, phylogenetic analyses are performed to predict homolog relationships such as orthologs and ultraparalogs.

Proper citation: GreenPhylDB (RRID:SCR_002834) Copy   


  • RRID:SCR_002755

    This resource has 10+ mentions.

http://www.gabipd.org/

Database that collects, integrates and links all relevant primary information from the GABI plant genome research projects and makes them accessible via internet. Its purpose is to support plant genome research in Germany, to yield information about commercial important plant genomes, and to establish a scientific network within plant genomic research.
GreenCards is the main interface for text based retrieval of sequence, SNP, mapping data etc. Sharing and interchange of data among collaborating research groups, industry and the patent- and licensing agency are facilitated.
* GreenCards: Text based search for sequence, mapping, SNP data etc. * Maps: Visualization of genetic or physical maps. * BLAST: Secure BLAST search against different public databases or non-public sequence data stored in GabiPD. * Proteomics: View interactive 2D-gels and view or download information for identified protein spots. Registered users can submit data via secure file upload.

Proper citation: Gabi Primary Database (RRID:SCR_002755) Copy   


http://www.broadinstitute.org/annotation/genome/magnaporthe_comparative/MultiHome.html

The Magnaporthe comparative genomics database provides accesses to multiple fungal genomes from the Magnaporthaceae family to facilitate the comparative analysis. As part of the Broad Fungal Genome Initiative, the Magnaporthe comparative project includes the finished M. oryzae (formerly M. grisea) genome, as well as the draft assemblies of Gaeumannomyces graminis var. tritici and M. poae. It provides users the tools to BLAST search, browse genome regions (to retrieve DNA, find clones, and graphically view sequence regions), and provides gene indexes and genome statistics. We were funded to attempt 7x sequence coverage comprising paired end reads from plasmids, Fosmids and BACs. Our strategy involves Whole Genome Shotgun (WGS) sequencing, in which sequence from the entire genome is generated and reassembled. Our specific aims are as follows: 1. Generate and assemble sequence reads yielding 7X coverage of the Magnaporthe oryzae genome through whole genome shotgun sequencing. 2. Generate and incorporate BAC and Fosmid end sequences into the genome assembly to provide a paired-end of average every 2 kb. 3. Integrate the genome sequence with existing physical and genetic map information. 4. Perform automated annotation of the sequence assembly. 5. Distribute the sequence assembly and results of our annotation and analysis through a freely accessible, public web server and by deposition of the sequence assembly in GenBank.

Proper citation: Magnaporthe comparative Database (RRID:SCR_003079) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X