Searching the RRID Resource Information Network

Our searching services are busy right now. Please try again later

  • Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.

Search

Type in a keyword to search

On page 11 showing 201 ~ 220 out of 255 results
Snippet view Table view Download 255 Result(s)
Click the to add this resource to a Collection
  • RRID:SCR_000110

http://aclame.ulb.ac.be/Classification/mego.html

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Gene Ontology dedicated to the functions of mobile genetic elements. The terms defined are used to annotate phage and plasmid protein families in ACLAME. Note: The phage ontology PhiGO has now been incorporated in MeGO and can thus be accessed in MeGO version 1.0 and up.

Proper citation: MeGO (RRID:SCR_000110) Copy   


  • RRID:SCR_000644

    This resource has 1+ mentions.

Ratings or validation data are available for this resource

http://www.avadis-ngs.com

Software integrated platform that provides analysis, management and visualization tools for next-generation sequencing data. It supports workflows for RNA-Seq, DNA-Seq, ChIP-Seq and small RNA-Seq experiments. Avadis has a built-in Gene Ontology browser to view ontology hierarchies. There are common ontology paths for multiple genes. Platform has collection of data / text mining algorithms, data visualization libraries, workflow/application automation layers, and enterprise data organization functions. These functions are available as libraries that allow developers to rapidly build software prototypes, applications and off-the-shelf products. The collection of algorithms and visualizations in AVADIS grows as new applications using the platform are developed. Currently, the algorithms that AVADIS platform contains range from general purpose statistical mining and modelling algorithms, to text mining algorithms, to very application-specific algorithms for microarray / NGS data analysis, QSAR modelling and biological networks analysis. AVADIS has a collection of powerful mining algorithms like PCA, ANOVA, T-test, clustering, classification and regression methods. The range of visualizations includes most statistical and data modelling related graphing views, and very application-specific visualizations. Some of the statistical views include 2D/3D scatter plots, profile plots, heat maps, histograms and matrix plot; data modelling relevant views include dendrograms, cluster profiles, similarity images and SOM U-matrices. Application-specific views in AVADIS include pathway network views, genome browsers, chemical structure views and pipe-line views. Platform: Windows compatible, Mac OS X compatible, Linux compatible,

Proper citation: Avadis (RRID:SCR_000644) Copy   


http://www.cs.cmu.edu/~jernst/stem/

The Short Time-series Expression Miner (STEM) is a Java program for clustering, comparing, and visualizing short time series gene expression data from microarray experiments (~8 time points or fewer). STEM allows researchers to identify significant temporal expression profiles and the genes associated with these profiles and to compare the behavior of these genes across multiple conditions. STEM is fully integrated with the Gene Ontology (GO) database supporting GO category gene enrichment analyses for sets of genes having the same temporal expression pattern. STEM also supports the ability to easily determine and visualize the behavior of genes belonging to a given GO category or user defined gene set, identifying which temporal expression profiles were enriched for these genes. (Note: While STEM is designed primarily to analyze data from short time course experiments it can be used to analyze data from any small set of experiments which can naturally be ordered sequentially including dose response experiments.) Platform: Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: Short Time-series Expression Miner (STEM) (RRID:SCR_005016) Copy   


  • RRID:SCR_005675

    This resource has 100+ mentions.

http://www.bumc.bu.edu/cardiovascularproteomics/cpctools/strap/

Software program that automatically annotates a protein list with information that helps in the meaningful interpretation of data from mass spectrometry and other techniques. It takes protein lists as input, in the form of plain text files, protXML files (usually from the TPP), or Dat files from MASCOT search results. From this, it generates protein annotation tables, and a variety of GO charts to aid individual and differential analysis of proteomics data. It downloads information from mainly the Uniprot and EBI QuickGO databases. STRAP requires Windows XP or higher with at least version 3.5 of the Microsoft .NET Framework installed. Platform: Windows compatible

Proper citation: STRAP (RRID:SCR_005675) Copy   


  • RRID:SCR_008234

    This resource has 1+ mentions.

http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on June 30, 2015. Refer to Proteome Analyst 3.0. Subcellular Localization and GO General Molecular Function predictions for many model organism proteomes using Protein Analyst, with a very high coverage rate. When users blast their proteins against the database of results, they will not only be shown blast homologs from the model organisms, but also the Subcellular Localization and GO General Molecular Function predictions as well.

Proper citation: Proteome Analyst PA-GOSUB (RRID:SCR_008234) Copy   


  • RRID:SCR_004426

    This resource has 5000+ mentions.

http://www.uniprot.org/help/uniprotkb

Central repository for collection of functional information on proteins, with accurate and consistent annotation. In addition to capturing core data mandatory for each UniProtKB entry (mainly, the amino acid sequence, protein name or description, taxonomic data and citation information), as much annotation information as possible is added. This includes widely accepted biological ontologies, classifications and cross-references, and experimental and computational data. The UniProt Knowledgebase consists of two sections, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot (reviewed) is a high quality manually annotated and non-redundant protein sequence database which brings together experimental results, computed features, and scientific conclusions. UniProtKB/TrEMBL (unreviewed) contains protein sequences associated with computationally generated annotation and large-scale functional characterization that await full manual annotation. Users may browse by taxonomy, keyword, gene ontology, enzyme class or pathway.

Proper citation: UniProtKB (RRID:SCR_004426) Copy   


http://www.emouseatlas.org/emage

A database of in situ gene expression data in the developing mouse embryo and an accompanying suite of tools to search and analyze the data. mRNA in situ hybridization, protein immunohistochemistry and transgenic reporter data is included. The data held is spatially annotated to a framework of 3D mouse embryo models produced by EMAP (e-Mouse Atlas Project). These spatial annotations allow users to query EMAGE by spatial pattern as well as by gene name, anatomy term or Gene Ontology (GO) term. The conceptual framework which houses the descriptions of the gene expression patterns in EMAGE is the EMAP Mouse Embryo Anatomy Atlas. This consists of a set of 3D virtual embryos at different stages of development, as well as an accompanying ontology of anatomical terms found at each stage. The raw data images can be conventional 2D photographs (of sections or wholemount specimens) or 3D images of wholemount specimens derived from Optical Projection Tomography (OPT) or confocal microscopy. Users may submit data using a Data submission tool or without.

Proper citation: EMAGE Gene Expression Database (RRID:SCR_005391) Copy   


  • RRID:SCR_005744

    This resource has 10+ mentions.

http://www.oeb.harvard.edu/faculty/hartl/old_site/lab/publications/GeneMerge.html

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Web-based and standalone application that returns a wide range of functional genomic data for a given set of study genes and provides rank scores for over-representation of particular functions or categories in the data. It uses the hypergeometric test statistic which returns statistically correct results for samples of all sizes and is the #2 fastest GO tool available (Khatri and Draghici, 2005). GeneMerge can be used with any discrete, locus-based annotation data, including, literature references, genetic interactions, mutant phenotypes as well as traditional Gene Ontology queries. GeneMerge is particularly useful for the analysis of microarray data and other large biological datasets. The big advantage of GeneMerge over other similar programs is that you are not limited to analyzing your data from the perspective of a pre-packaged set of gene-association data. You can download or create gene-association files to analyze your data from an unlimited number of perspectives. Platform: Online tool, Windows compatible, Mac OS X compatible, Linux compatible, Unix compatible

Proper citation: GeneMerge (RRID:SCR_005744) Copy   


http://coot.embl.de/g2d/

THIS RESOURCE IS NO LONGER IN SERVICE, documented August 22, 2016. A database of candidate genes for mapped inherited human diseases. Candidate priorities are automatically established by a data mining algorithm that extracts putative genes in the chromosomal region where the disease is mapped, and evaluates their possible relation to the disease based on the phenotype of the disorder. Data analysis uses a scoring system developed for the possible functional relations of human genes to genetically inherited diseases that have been mapped onto chromosomal regions without assignment of a particular gene. Methodology can be divided in two parts: the association of genes to phenotypic features, and the identification of candidate genes on a chromosonal region by homology. This is an analysis of relations between phenotypic features and chemical objects, and from chemical objects to protein function terms, based on the whole MEDLINE and RefSeq databases.

Proper citation: Candidate Genes to Inherited Diseases (RRID:SCR_008190) Copy   


  • RRID:SCR_006943

    This resource has 100+ mentions.

http://genecodis.cnb.csic.es/

Web-based tool for the ontological analysis of large lists of genes. It can be used to determine biological annotations or combinations of annotations that are significantly associated to a list of genes under study with respect to a reference list. As well as single annotations, this tool allows users to simultaneously evaluate annotations from different sources, for example Biological Process and Cellular Component categories of Gene Ontology., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: GeneCodis (RRID:SCR_006943) Copy   


http://david.abcc.ncifcrf.gov/content.jsp?file=/ease/ease1.htm&type=1

Windows(c) desktop software application, customizable and standalone, that facilitates the biological interpretation of gene lists derived from the results of microarray, proteomic, and SAGE experiments. Provides statistical methods for discovering enriched biological themes within gene lists, generates gene annotation tables, and enables automated linking to online analysis tools. Offers statistical models to deal with multi-test comparison problem. Platform: Windows compatible

Proper citation: EASE: the Expression Analysis Systematic Explorer (RRID:SCR_013361) Copy   


https://omictools.com/ecgene-tool

Database of functional annotation for alternatively spliced genes. It uses a gene-modeling algorithm that combines the genome-based expressed sequence tag (EST) clustering and graph-theoretic transcript assembly procedures. It contains genome, mRNA, and EST sequence data, as well as a genome browser application. Organisms included in the database are human, dog, chicken, fruit fly, mouse, rhesus, rat, worm, and zebrafish. Annotation is provided for the whole transcriptome, not just the alternatively spliced genes. Several viewers and applications are provided that are useful for the analysis of the transcript structure and gene expression. The summary viewer shows the gene summary and the essence of other annotation programs. The genome browser and the transcript viewer are available for comparing the gene structure of splice variants. Changes in the functional domains by alternative splicing can be seen at a glance in the transcript viewer. Two unique ways of analyzing gene expression is also provided. The SAGE tags deduced from the assembled transcripts are used to delineate quantitative expression patterns from SAGE libraries available publicly. The cDNA libraries of EST sequences in each cluster are used to infer qualitative expression patterns.

Proper citation: ECgene: Gene Modeling with Alternative Splicing (RRID:SCR_007634) Copy   


  • RRID:SCR_000157

http://psychiatry.igm.jhmi.edu/SynaptomeDB/

THIS RESOURCE IS NO LONGER IN SERVICE. Documented on July 31,2025. Ontology-based knowledgebase for synaptic genes. These genes encode components of the synapse including neurotransmitters and their receptors, adhesion / cytoskeletal proteins, scaffold proteins, transporters, and others. It integrates various and complex data sources for synaptic genes and proteins., THIS RESOURCE IS NO LONGER IN SERVICE. Documented on September 16,2025.

Proper citation: SynaptomeDB (RRID:SCR_000157) Copy   


  • RRID:SCR_001368

    This resource has 50+ mentions.

http://mitominer.mrc-mbu.cam.ac.uk/

A database of mitochondrial proteomics data. It includes two sets of proteins: the MitoMiner Reference Set, which has 10477 proteins from 12 species; and MitoCarta, which has 2909 proteins from mouse and human mitochondrial proteins. MitoMiner provides annotation from the Gene Ontology (GO) and UniProt databases. This reference set contains all proteins that are annotated by either of these resources as mitochondrial in any of the species included in MitoMiner. MitoMiner data via is available via Application Programming Interface (API). The client libraries are provided in Perl, Python, Ruby and Java.

Proper citation: MitoMiner (RRID:SCR_001368) Copy   


  • RRID:SCR_005633

    This resource has 10+ mentions.

http://agbase.msstate.edu/cgi-bin/tools/goretriever_select.pl

GORetriever is used to find all of the GO annotations corresponding to a list of user-supplied protein identifiers. GORetriever produces a list of proteins and their annotations and a separate list of entries with no GO annotation. Platform: Online tool

Proper citation: GORetriever (RRID:SCR_005633) Copy   


http://llama.mshri.on.ca/funcassociate/

A web-based tool that accepts as input a list of genes, and returns a list of GO attributes that are over- (or under-) represented among the genes in the input list. Only those over- (or under-) representations that are statistically significant, after correcting for multiple hypotheses testing, are reported. Currently 37 organisms are supported. In addition to the input list of genes, users may specify a) whether this list should be regarded as ordered or unordered; b) the universe of genes to be considered by FuncAssociate; c) whether to report over-, or under-represented attributes, or both; and d) the p-value cutoff. A new version of FuncAssociate supports a wider range of naming schemes for input genes, and uses more frequently updated GO associations. However, some features of the original version, such as sorting by LOD or the option to see the gene-attribute table, are not yet implemented. Platform: Online tool

Proper citation: FuncAssociate: The Gene Set Functionator (RRID:SCR_005768) Copy   


  • RRID:SCR_005794

http://metagp.ism.ac.jp/

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. Meta Gene Profiler (MetaGP) is a web application tool for discovering differentially expressed gene sets (meta genes) from the gene set library registered in our database. Once user submits gene expression profiles which are categorized into subtypes of conditioned experiments, or a list of genes with the valid pvalues, MetaGP assigns the integrated p-value to each gene set by combining the statistical evidences of genes that are obtained from gene-level analysis of significance. The current version supports the nine Affymetrix GeneChip arrays for the three organisms (human, mouse and rat). The significances of GO terms are graphically mapped onto the directed acyclic graph (DAG). The navigation systems of GO hierarchy enable us to summarize the significance of interesting sub-graphs on the web browser. Platform: Online tool

Proper citation: MetaGeneProfiler (RRID:SCR_005794) Copy   


  • RRID:SCR_005674

    This resource has 1+ mentions.

http://ccbb.jnu.ac.in/OntoVisT.html

THIS RESOURCE IS NO LONGER IN SERVICE, documented on February 07, 2013. Web based ontological visualization tool for interactive visualization of any ontological hierarchy for a specific node of interest, up to the chosen level of children and/or ancestor. It takes any ontology file in OBO format as input and generates output as DAG hierarchical graph for the chosen query. To enhance the navigation capabilities of complex networks, we have embedded several features such as search criteria, zoom in/out, center focus, nearest neighbor highlights and mouse hover events. The application has been tested on all 72 data sets available in OBO format through OBO foundry. The results for few of them can be accessed through OntoVisT-Gallery.

Proper citation: OntoVisT (RRID:SCR_005674) Copy   


  • RRID:SCR_005795

http://functionalgenomics.de/ontogate/

THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 13, 2012. OntoGate provides access to GenomeMatrix (GM) entries from Ontology terms and external datasets which have been associated with ontology terms, to find genes from different species in the GM, which have been mapped to the ontology terms. OntoGate includes a BLAST search of amino acid sequences corresponding to annotated genes. Platform: Online tool

Proper citation: OntoGate (RRID:SCR_005795) Copy   


http://wego.genomics.org.cn/cgi-bin/wego/index.pl

Web Gene Ontology Annotation Plot (WEGO) is a simple but useful tool for plotting Gene Ontology (GO) annotation results. Different from other commercial software for chart creating, WEGO is designed to deal with the directed acyclic graph (DAG) structure of GO to facilitate histogram creation of GO annotation results. WEGO has been widely used in many important biological research projects, such as the rice genome project and the silkworm genome project. It has become one of the useful tools for downstream gene annotation analysis, especially when performing comparative genomics tasks. Platform: Online tool

Proper citation: WEGO - Web Gene Ontology Annotation Plot (RRID:SCR_005827) Copy   



Can't find your Tool?

We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.

Can't find the RRID you're searching for? X
  1. NIDDK Information Network Resources

    Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Sources

    Here are the sources that were queried against in your search that you can investigate further.

  9. Categories

    Here are the categories present within dkNET that you can filter your data on

  10. Subcategories

    Here are the subcategories present within this category that you can filter your data on

  11. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

X