Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.
SciCrunch Registry is a curated repository of scientific resources, with a focus on biomedical resources, including tools, databases, and core facilities - visit SciCrunch to register your resource.
Database of known and predicted mammalian and eukaryotic protein-protein interactions, it is designed to be both a resource for the laboratory scientist to explore known and predicted protein-protein interactions, and to facilitate bioinformatics initiatives exploring protein interaction networks. It has been built by mapping high-throughput (HTP) data between species. Thus, until experimentally verified, these interactions should be considered predictions. It remains one of the most comprehensive sources of known and predicted eukaryotic PPI. It contains 490,600 Source Interactions, 370,002 Predicted Interactions, for a total of 846,116 interactions, and continues to expand as new protein-protein interaction data becomes available.
Proper citation: I2D (RRID:SCR_002957) Copy
http://www.humanproteinpedia.org/
A community portal for sharing and integration of human protein data that allows research laboratories to contribute and maintain protein annotations. The Human Protein Reference Database (HPRD) integrates data that is deposited along with the existing literature curated information in the context of an individual protein. Data pertaining to post-translational modifications, protein-protein interactions, tissue expression, expression in cell lines, subcellular localization and enzyme substrate relationships can be submitted.
Proper citation: Human Proteinpedia (RRID:SCR_002948) Copy
Computational biology research at Memorial Sloan-Kettering Cancer Center (MSKCC) pursues computational biology research projects and the development of bioinformatics resources in the areas of: sequence-structure analysis; gene regulation; molecular pathways and networks, and diagnostic and prognostic indicators. The mission of cBio is to move the theoretical methods and genome-scale data resources of computational biology into everyday laboratory practice and use, and is reflected in the organization of cBio into research and service components ~ the intention being that new computational methods created through the process of scientific inquiry should be generalized and supported as open-source and shared community resources. Faculty from cBio participate in graduate training provided through the following graduate programs: * Gerstner Sloan-Kettering Graduate School of Biomedical Sciences * Graduate Training Program in Computational Biology and Medicine Integral to much of the research and service work performed by cBio is the creation and use of software tools and data resources. The tools that we have created and utilize provide evidence of our involvement in the following areas: * Cancer Genomics * Data Repositories * iPhone & iPod Touch * microRNAs * Pathways * Protein Function * Text Analysis * Transcription Profiling
Proper citation: Computational Biology Center (RRID:SCR_002877) Copy
http://bibiserv.techfak.uni-bielefeld.de/dialign/
Tool for multiple sequence alignment using various sources of external information that is particularly useful to detect local homologies in sequences with low overall similarity. While standard alignment methods rely on comparing single residues and imposing gap penalties, DIALIGN constructs pairwise and multiple alignments by comparing entire segments of the sequences. No gap penalty is used. This approach can be used for both global and local alignment, but it is particularly successful in situations where sequences share only local homologies. Several versions of DIALIGN are available online at GOBICS, http://dialign.gobics.de/
Proper citation: DIALIGN (RRID:SCR_003041) Copy
http://lab.rockefeller.edu/tuschl/
RNA is not only a carrier of genetic information, but also a catalyst and a guide for sequence-specific recognition and processing of other RNA molecules. This lab investigates the regulatory mechanisms of RNA interference, RNA-mediated translational control, and nuclear pre-mRNA splicing. Classical and combinatorial biochemical techniques are used to analyze the function of the RNA- and protein-components involved in those processes.
Proper citation: Tuschl Laboratory: RNA Molecular Biology (RRID:SCR_002866) Copy
https://rostlab.org/owiki/index.php/PredictNLS
Software automated tool for analysis and determination of Nuclear Localization Signals (NLS). Predicts that your protein is nuclear or finds out whether your potential NLS is found in our database. The program also compiles statistics on the number of nuclear/non-nuclear proteins in which your potential NLS is found. Finally, proteins with similar NLS motifs are reported, and the experimental paper describing the particular NLS are given.
Proper citation: PredictNLS (RRID:SCR_003133) Copy
http://rostlab.org/services/nlsdb/
A database of nuclear localization signals (NLSs) and of nuclear proteins targeted to the nucleus by NLS motifs. NLSs are short stretches of residues mediating transport of nuclear proteins into the nucleus. The database contains 114 experimentally determined NLSs that were obtained through an extensive literature search. Using "in silico mutagenesis" this set was extended to 308 experimental and potential NLSs. This final set matched over 43% of all known nuclear proteins and matches no currently known non-nuclear protein. NLSdb contains over 6000 predicted nuclear proteins and their targeting signals from the PDB and SWISS-PROT/TrEMBL databases. The database also contains over 12 500 predicted nuclear proteins from six entirely sequenced eukaryotic proteomes (Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana and Saccharomyces cerevisiae). NLS motifs often co-localize with DNA-binding regions. This observation was used to also annotate over 1500 DNA-binding proteins. From this site you can: * Query NLSdb * Find out how to use NLSdb * Browse the entries in NLSdb * Find out if your protein has an NLS using PredictNLS * Predict subcellular localization of your protein using LOCtree
Proper citation: NLSdb: a database of nuclear localization signals (RRID:SCR_003273) Copy
http://abi.inf.uni-tuebingen.de/Services/MultiLoc2
An extensive high-performance subcellular protein localization prediction system that incorporates phylogenetic profiles and Gene Ontology terms to yield higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. A downloadable version of MultiLoc2 for local use is also available.
Proper citation: MultiLoc (RRID:SCR_003151) Copy
Database to catalog experimentally determined interactions between proteins combining information from a variety of sources to create a single, consistent set of protein-protein interactions that can be downloaded in a variety of formats. The data were curated, both, manually and also automatically using computational approaches that utilize the the knowledge about the protein-protein interaction networks extracted from the most reliable, core subset of the DIP data. Because the reliability of experimental evidence varies widely, methods of quality assessment have been developed and utilized to identify the most reliable subset of the interactions. This CORE set can be used as a reference when evaluating the reliability of high-throughput protein-protein interaction data sets, for development of prediction methods, as well as in the studies of the properties of protein interaction networks. Tools are available to analyze, visualize and integrate user's own experimental data with the information about protein-protein interactions available in the DIP database. The DIP database lists protein pairs that are known to interact with each other. By interact they mean that two amino acid chains were experimentally identified to bind to each other. The database lists such pairs to aid those studying a particular protein-protein interaction but also those investigating entire regulatory and signaling pathways as well as those studying the organization and complexity of the protein interaction network at the cellular level. Registration is required to gain access to most of the DIP features. Registration is free to the members of the academic community. Trial accounts for the commercial users are also available.
Proper citation: Database of Interacting Proteins (DIP) (RRID:SCR_003167) Copy
Database of images of putative biological pathways, macromolecular structures, gene families, and cellular relationships. It is of use to those who are working with large sets of genes or proteins using cDNA arrays, functional genomics, or proteomics. The rationale for this collection is that: # Except in a few cases, information on most biological pathways in higher eukaryotes is non-existent, incomplete, or conflicting. # Similar biological pathways differ by tissue context, developmental stages, stimulatory events, or for other complex reasons. This database allows comparisons of different variations of pathways that can be tested empirically. # The goal of this database is to use images created directly by biomedical scientists who are specialists in a particular biological system. It is specifically designed to NOT use average, idealized or redrawn pathways. It does NOT use pathways defined by computer algorithm or information search approaches. # Information on biological pathways in higher eukaryotes generally resides in the images and text of review papers. Much of this information is not easily accessible by current medical reference search engines. # All images are attributable to the original authors. All pathways or other biological systems described are graphic representations of natural systems. Each pathway is to be considered a work in progress. Each carries some degree of error or incompleteness. The end user has the ultimate responsibility to determine the scientific correctness and validity in their particular biological system. Image/pathway submissions are welcome.
Proper citation: Biological Biochemical Image Database (RRID:SCR_003474) Copy
http://pir.georgetown.edu/pirwww/dbinfo/pirsf.shtml
A SuperFamily classification system, with rules for functional site and protein name, to facilitate the sensible propagation and standardization of protein annotation and the systematic detection of annotation errors. The PIRSF concept is being used as a guiding principle to provide comprehensive and non-overlapping clustering of UniProtKB sequences into a hierarchical order to reflect their evolutionary relationships. The PIRSF classification system is based on whole proteins rather than on the component domains; therefore, it allows annotation of generic biochemical and specific biological functions, as well as classification of proteins without well-defined domains. There are different PIRSF classification levels. The primary level is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). At a lower level are the subfamilies which are clusters representing functional specialization and/or domain architecture variation within the family. Above the homeomorphic level there may be parent superfamilies that connect distantly related families and orphan proteins based on common domains. Because proteins can belong to more than one domain superfamily, the PIRSF structure is formally a network. The FTP site provides free download for PIRSF.
Proper citation: PIRSF (RRID:SCR_003352) Copy
Centralized, standards compliant, public data repository for proteomics data, including protein and peptide identifications, post-translational modifications and supporting spectral evidence. Originally it was developed to provide a common data exchange format and repository to support proteomics literature publications. This remit has grown with PRIDE, with the hope that PRIDE will provide a reference set of tissue-based identifications for use by the community. The future development of PRIDE has become closely linked to HUPO PSI. PRIDE encourages and welcomes direct user submissions of protein and peptide identification data to be published in peer-reviewed publications. Users may Browse public datasets, use PRIDE BioMart for custom queries, or download the data directly from the FTP site. PRIDE has been developed through a collaboration of the EMBL-EBI, Ghent University in Belgium, and the University of Manchester.
Proper citation: Proteomics Identifications (PRIDE) (RRID:SCR_003411) Copy
http://wiki.c2b2.columbia.edu/honiglab_public/index.php/Main_Page
Laboratory portal, including software, web-based tools, databases and data sets, related to their research that focuses on the development and application of biophysical and bioinformatics methods aimed at understanding the structural and energetic origins of protein-protein, protein-nucleic acid, and protein-membrane interactions. Their work includes fundamental theoretical research, the development of software tools, and applications to problems of biological importance. In this regard they maintain an active collaborative computational and experimental research program on the molecular basis of cell-cell adhesion. Other problems of current interest include protein structure prediction, the organization of protein sequence/structure space, the prediction of protein function based on protein structure, the structural origins of specificity in protein-DNA interactions, RNA function and, more generally, the electrostatic properties of biological macromolecules.
Proper citation: Honig Lab (RRID:SCR_003410) Copy
Collection of pathways and pathway annotations. The core unit of the Reactome data model is the reaction. Entities (nucleic acids, proteins, complexes and small molecules) participating in reactions form a network of biological interactions and are grouped into pathways (signaling, innate and acquired immune function, transcriptional regulation, translation, apoptosis and classical intermediary metabolism) . Provides website to navigate pathway knowledge and a suite of data analysis tools to support the pathway-based analysis of complex experimental and computational data sets.
Proper citation: Reactome (RRID:SCR_003485) Copy
http://mimi.ncibi.org/MimiWeb/main-page.jsp
MiMi Web gives you an easy to use interface to a rich NCIBI data repository for conducting your systems biology analyses. This repository includes the MiMI database, PubMed resources updated nightly, and text mined from biomedical research literature. The MiMI database comprehensively includes protein interaction information that has been integrated and merged from diverse protein interaction databases and other biological sources. With MiMI, you get one point of entry for querying, exploring, and analyzing all these data. MiMI provides access to the knowledge and data merged and integrated from numerous protein interactions databases and augments this information from many other biological sources. MiMI merges data from these sources with deep integration into its single database with one point of entry for querying, exploring, and analyzing all these data. MiMI allows you to query all data, whether corroborative or contradictory, and specify which sources to utilize. MiMI displays results of your queries in easy-to-browse interfaces and provides you with workspaces to explore and analyze the results. Among these workspaces is an interactive network of protein-protein interactions displayed in Cytoscape and accessed through MiMI via a MiMI Cytoscape plug-in. MiMI gives you access to more information than you can get from any one protein interaction source such as: * Vetted data on genes, attributes, interactions, literature citations, compounds, and annotated text extracts through natural language processing (NLP) * Linkouts to integrated NCIBI tools to: analyze overrepresented MeSH terms for genes of interest, read additional NLP-mined text passages, and explore interactive graphics of networks of interactions * Linkouts to PubMed and NCIBI's MiSearch interface to PubMed for better relevance rankings * Querying by keywords, genes, lists or interactions * Provenance tracking * Quick views of missing information across databases. Data Sources include: BIND, BioGRID, CCSB at Harvard, cPath, DIP, GO (Gene Ontology), HPRD, IntAct, InterPro, IPI, KEGG, Max Delbreuck Center, MiBLAST, NCBI Gene, Organelle DB, OrthoMCL DB, PFam, ProtoNet, PubMed, PubMed NLP Mining, Reactome, MINT, and Finley Lab. The data integration service is supplied under the conditions of the original data sources and the specific terms of use for MiMI. Access to this website is provided free of charge. The MiMI data is queryable through a web services api. The MiMI data is available in PSI-MITAB Format. These files represent a subset of the data available in MiMI. Only UniProt and RefSeq identifiers are included for each interactor, pathways and metabolomics data is not included, and provenance is not included for each interaction. If you need access to the full MiMI dataset please send an email to mimi-help (at) umich.edu.
Proper citation: Michigan Molecular Interactions (RRID:SCR_003521) Copy
http://portal.ncibi.org/gateway/mimiplugin.html
The Cytoscape MiMI Plugin is an open source interactive visualization tool that you can use for analyzing protein interactions and their biological effects. The Cytoscape MiMI Plugin couples Cytoscape, a widely used software tool for analyzing bimolecular networks, with the MiMI database, a database that uses an intelligent deep-merging approach to integrate data from multiple well-known protein interaction databases. The MiMI database has data on 119,880 molecules, 330,153 interactions, and 579 complexes. By querying the MiMI database through Cytoscape you can access the integrated molecular data assembled in MiMI and retrieve interactive graphics that display protein interactions and details on related attributes and biological concepts. You can interact with the visualization by expanding networks to the next nearest neighbors and zooming and panning to relationships of interest. You also can perceptually encode nodes and links to show additional attributes through color, size and the visual cues. You can edit networks, link out to other resources and tools, and access information associated with interactions that has been mined and summarized from the research literature information through a biology natural language processing database (BioNLP) and a multi-document summarization system, MEAD. Additionally, you can choose sub-networks of interest and use SAGA, a graph matching tool, to match these sub-networks to biological pathways.
Proper citation: MiMI Plugin for Cytoscape (RRID:SCR_003424) Copy
http://core.biotech.hawaii.edu/Bioinformatics.htm
THIS RESOURCE IS NO LONGER IN SERVCE, documented January 28, 2019. Core Facility provides the software and support for computer assisted protein and DNA sequence analysis and database access. The Genetics Computer Group GCG-Wisconsin package is currently available on PBRC's UNIX platform that is accessible via modem or direct connection. The package can be accessed via three interfaces: the command-line interface (UNIX C-shell), the web-based interface (SeqWeb) and the X-Windows based graphics interface (SeqLab). Applications in the package include sequence editing, alignment, comparison, primer design, restriction analysis, mapping, data presentation, database browsing, etc. In addition to local databases, access to remote databases (BLAST) is integrated into the package. The local databases are updated quarterly. Databases available include GenBank, EMBL, PIR-Protein, SWISS-PROT and Restriction Enzymes (REBASE).
Proper citation: GCG/SeqWeb (RRID:SCR_003454) Copy
https://services.healthtech.dtu.dk/
Center for Biological Sequence Analysis of the Technical University of Denmark conducts basic research in the field of bioinformatics and systems biology and directs its research primarily towards topics related to the elucidation of the functional aspects of complex biological mechanisms. A large number of computational methods have been produced, which are offered to others via WWW servers. Several data sets are also available. The center also has experimental efforts in gene expression analysis using DNA chips and data generation in relation to the physical and structural properties of DNA. The on-line prediction services at CBS are available as interactive input forms. Most of the servers are also available as stand-alone software packages with the same functionality. In addition, for some servers, programmatic access is provided in the form of SOAP-based Web Services. The center also educates engineering students in biotechnology and systems biology and offers a wide range of courses in bioinformatics, systems biology, human health, microbiology and nutrigenomics.
Proper citation: DTU Center for Biological Sequence Analysis (RRID:SCR_003590) Copy
http://www.agedbrainsysbio.eu/
Consortium focused on identifying the foundational pathways responsible for the aging of the brain, with a focus on Late Onset Alzheimer's disease. They aim to identify the interactions through which the aging phenotype develops in normal and in disease conditions; modeling novel pathways and their evolutionary properties to design experiments that identify druggable targets. As early steps of neurodegenerative disorders are expected to impact synapse function the project will focus in particular on pre- or postsynaptic protein networks. The concept is to identify subsets of pathways with two unique druggable hallmarks, the validation of interactions occurring locally in subregions of neurons and a human and/or primate accelerated evolutionary signature. The consortium will do this through six approaches: * identification of interacting protein networks from recent Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) data, * experimental validation of interconnected networks working in subregion of a neuron (such as dendrites and dendritic spines), * inclusion of these experimentally validated networks in larger networks obtained from available databases to extend possible protein interactions, * identification of human and/or primate positive selection either in coding or in regulatory gene sequences, * manipulation of these human and/or primate accelerated evolutionary interacting proteins in human neurons derived from induced Pluripotent Stem Cells (iPSCs) * modeling predictions in drosophila and novel mouse transgenic models * validation of new druggable targets and markers as a proof-of-concept towards the prevention and cure of aging cognitive defects. The scientists will share results and know-how on Late-Onset Alzheimer Disease-Genome Wide Association Studies (LOAD-GWAS) gene discovery, comparative functional genomics in mouse and drosophila models, in mouse transgenic approaches, research on human induced pluripotent stem cells (hiPSC) and their differentiation in vitro and modeling pathways with emphasis on comparative and evolutionary aspects. The four European small to medium size enterprises (SMEs) involved will bring their complementary expertise and will ensure translation of project results to clinical application.
Proper citation: AgedBrainSYSBIO (RRID:SCR_003825) Copy
http://www.garban.org/garban/home.php
THIS RESOURCE IS NO LONGER IN SERVICE, documented on July 12, 2012. GARBAN is a tool for analysis and rapid functional annotation of data arising from cDNA microarrays and proteomics techniques. GARBAN has been implemented with bioinformatic tools to rapidly compare, classify, and graphically represent multiple sets of data (genes/ESTs, or proteins), with the specific aim of facilitating the identification of molecular markers in pathological and pharmacological studies. GARBAN has links to the major genomic and proteomic databases (Ensembl, GeneBank, UniProt Knowledgebase, InterPro, etc.), and follows the criteria of the Gene Ontology Consortium (GO) for ontological classifications. Source may be shared: e-mail garban (at) ceit.es. Platform: Online tool
Proper citation: GARBAN (RRID:SCR_005778) Copy
Can't find your Tool?
We recommend that you click next to the search bar to check some helpful tips on searches and refine your search firstly. Alternatively, please register your tool with the SciCrunch Registry by adding a little information to a web form, logging in will enable users to create a provisional RRID, but it not required to submit.
Welcome to the dkNET Resources search. From here you can search through a compilation of resources used by dkNET and see how data is organized within our community.
You are currently on the Community Resources tab looking through categories and sources that dkNET has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.
If you have an account on dkNET then you can log in from here to get additional features in dkNET such as Collections, Saved Searches, and managing Resources.
Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:
You can save any searches you perform for quick access to later from here.
We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.
If you are logged into dkNET you can add data records to your collections to create custom spreadsheets across multiple sources of data.
Here are the sources that were queried against in your search that you can investigate further.
Here are the categories present within dkNET that you can filter your data on
Here are the subcategories present within this category that you can filter your data on
If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.